

Australian National University

High Frequency, High Accuracy Pointing onboard Nanosats using Neuromorphic Event Sensing and Piezoelectric Actuation

Yasir Latif¹, Peter Anastasiou², Yonhon Ng³, Zebb Prime², Tien-Fu Lu¹, Matthew Tetlow², Robert Mahony³, and Tat-Jun Chin¹

The need for stable pointing

Space-based applications require **precise control of spacecraft attitude** to accurately and consistently point onboard sensors towards target objects or regions in a distant orbit.

Attitude control remains an obstacle on nanosatellites due to **limited sensing** capabilities present on-board and external and internal factors sources of **perturbations** (e.g., atmospheric drag, unwanted torques from reaction wheels).

(Top) Space-time Event volume observing jitter in stars (Bottom) 10ms event batches extracted from the stream (1-3) and the spread of light over multiple pixels caused by perturbation in the 1-second-long exposure (4)

(Left) System Prototype (Right) Hardware components

High frequency sensing using event cameras

Building on the **high-frequency sensing** provided by the neuromorphic event sensor, we detect high-frequency perturbation experienced by the mission sensor. The **event cameras** provides relative attitude estimates at 100Hz, enabling "**ultra-fine attitude estimation**". The **piezoelectric stage** corrects for the estimated perturbations leading to "**ultra-fine stabilisation**" for both the event sensor and mission sensor.

Why event sensor?	Event Sensor	COTS star trackers
Equivalent framerate (fps)	1,000,000	1-16
Dynamic range (dB)	120	44.6 (High end DSLR)
Power consumption (mW)	< 10	100 – 1500

Tracking under high frequency perturbations: (Top) The executed noisy track along with tracking results (Bottom) Tracking performance along the x- and y- direction over time along with a zoomed in view for the 3-4 second time window.

50Hz capable Ultra-fine stabilisation

Stabilised pointing over time: *Left:* Linear *right:* Circular trajectory. Each box contains the spread around the stabilised pointing direction and evolution of pointing error over time.

Performance statistics

- Tracking accuracy in the range of <5 arcseconds
- Operational frequency ~ 50Hz tracking / 10Hz stabilisation.

)

noise level (degrees)

(Left) Payload in relation to the ADCS (Inset) Hardware components at the block level for the payload

		noise level (degrees)		
trajectory		10^{-9}	10^{-8}	10^{-7}
linear	σ_{x}	3.36	2.61	3.62
	σ_{y}	2.61	2.73	3.70
square	σ_{x}	3.28	3.87	4.59
	σ_y	3.74	4.29	5.22
circle	σ_{x}	7.79	3.74	4.71
	σ_y	4.21	4.63	5.01

Tracking results for various noise levels

Stabilisation results: 1σ pointing accuracy for various levels reported in arcsec

¹Australian Institute for Machine Learning, University of Adelaide, ²Inovor Technologies, ³Australian National University

