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Abstract—Long term autonomy in robots requires the ability to
reconsider previously taken decisions when new evidence becomes
available. Loop closing links generated by a place recognition
system may become inconsistent as additional evidence arrives.
This paper is concerned with the detection and exclusion of such
contradictory information from the map being built, in order to
recover the correct map estimate. We propose a novel consistency
based method to extract the loop closure regions that agree both
among themselves and with the robot trajectory over time. We
also assume that the contradictory loop closures are inconsistent
among themselves and with the robot trajectory. We support our
proposal, the RRR algorithm, on well-known odometry systems,
e.g. visual or laser, using the very efficient graph optimization
framework g2o as back-end. We back our claims with several
experiments carried out on real data.

I. INTRODUCTION

The ability to detect that past place recognition decisions
(also known as the loop closing problem) were incorrect, and
to recover the accurate state estimate once they are removed,
is crucial for lifelong mobile robotic operations. No matter
how robust a place recognition system might be, there always
exists the possibility of getting just one false positive loop
closing hypothesis. This can be catastrophic for any estimation
algorithm. Only by collecting more evidence over time we
can detect and correct these mistakes in place recognition.
Reliability increases with redundancy during the verification
process.

Consider long term navigation, see Fig. 4(b) (best viewed
in color), where information is collected session by session
and place recognition is used to improve the estimation after
every session. Failures may happen, but With the arrival of new
evidence and the reconsideration of decisions taken earlier, the
estimation can be corrected.

To achieve this, we need to realize that the place recogni-
tion system has generated wrong constraints, remove them if
necessary, and recompute the estimation. We propose a novel
consistency method based on consensus: wrong loop closure
constraints usually are in contradiction among themselves,
with the correct ones, and with the sequential movement
constraints (odometry) of the robot. At the same time, the
correct ones form consensus among themselves and with the
odometry.

Our method, the Realizing, Reversing, Recovering (RRR)
algorithm, works with the pose graph formulation. It is part of
the back-end of a SLAM system and is therefore independent
of the type of sensor used for odometry or place recognition.

All our method needs is a system that is able to generate a
pose graph for the sequential poses and a place recognition
system that can provide constraints for loop closure.

In the next section, we discuss relevant work and highlight
the need for a robust loop closing method. In section III
we detail our proposal, the RRR algorithm, and carry out
real experiments in section IV. Finally, in section V and VI
discussion and conclusions about the work are presented, along
with possible future work.

II. RELATED WORK

Several approaches to persistent mapping have appeared
in the robotics literature in the recent past. Konolige and
Bowman [8] presented a stereo visual odometry system that
works together with a bag of words place recognition system
to build multiple representations of dynamic environments
over time. Multiple map stitching, recovery from odometry
failures, loop closing, and global localization, all rely on
the robustness of the place recognition system. “Weak links”
are removed when place recognition is able to close loops,
making it prone to errors when the place recognition closes
loops wrongly. Similarly, McDonald et al. [11] presented a
multi-session 6 DOF Visual SLAM system using “anchor
nodes”. In their approach place recognition is assumed to be
perfect and its output is trusted every time. Sibley et al. [17]
presented a relative bundle adjustment approach for large scale
topological mapping. They show an example of mapping from
London to Oxford, over a trajectory of about 121km . They
also use appearance based place recognition and are therefore
in danger of making wrong decisions in case of incorrect
place recognition. All of these approaches to large scale and
persistent mapping rely on a place recognition system with
zero false positives.

Appearance based loop closing approaches that work in
real time usually follow the bag of words approach [18].
FabMap, from Cummins and Newman [3], uses a bag of
words approach with probabilistic reasoning that has been
shown to work robustly over a long trajectory. The BoW-CRF
system [1] generates loop closings using a bag-of-words and
carries out verifications using conditional random fields. This
improves the robustness of the system. In any case, neither
approach can guarantee 100% accuracy. Olson [12] proposed
a hypothesis verification method for loop closure constraints
using graph partitioning based on spectral clustering. Another
approach is to delay decision making and maintain multiple



topologies of the map with an associated belief for each one.
Ranganathan and Dellaert [14] follow this approach using Rao-
Blackwellized particle filter. However, they do not explicitly
show how their system is affected by and recovers from wrong
loop closures. Their method is also unique in the sense that it
uses the estimation process itself to reason about possible loop
closures. A similar estimation based reasoning approach using
pose graph formulation was presented by Sünderhauf and
Protzel [20] in which a robust SLAM back end using “switch
factors” was proposed. The central idea is to penalize those
loop closure links during graph optimization that deviate from
the constraints they suggest between two nodes. Similar to our
approach, they change the topological structure of the graph
based on identification and rejection of wrong loop closures. In
contrast, however, they assess the validity of every loop closure
on its own, without forming a general consensus using all the
available information. In cases where there are a number of
hypotheses that suggest the same but wrong loop closings (for
example due to perceptual aliasing in long corridors), overall
consensus helps us in rejection of such outliers. Their method
suggest a continuous function governing the state of “switch
factors” which does not make sense in all the cases.

III. OUR PROPOSAL: THE RRR ALGORITHM

Since place recognition is a very important step in map
estimation, there is a need for a robust mechanism that
can identify incorrect place recognition links. We propose
a robust consistency-based loop closure verification method
using the pose graph formulation based on the observation
that correct loop closure in conjunction with odometry can
help in the detection of wrong loop closures. Our method
follows the line of work in which the estimation process itself
is used in making the distinction between correct and false
loop closures. Thanks to the maturity of the Simultaneous
Localization and Mapping (SLAM) problem, in the last years
several very efficient estimation methods have been published
as for instance iSAM by Kaess et al. [7], HOG-Man by Grisetti
et al. [6], and g2o by Kümmerle et al. [10].

The graph based formulation for SLAM, the so-called
“graph-SLAM”, models robot poses as nodes in a graph
where links from odometry or loop closures form edges or
“constraints”. Let x = (x1 . . . xn)T be a vector of parameters
that describe the configuration of the nodes. Let ωij and Ωij
be the mean and the information of the observation of node
j from node i. Given the state x, let the function fij(x) be
a function that calculates the perfect observation according to
the current state. The residual rij can then be calculated as:

rij(x) = ωij − fij(x) (1)

Constraints can either be introduced by odometry which are
sequential constraints (j = i + 1), or from place recognition
system which are non-sequential. The amount of error intro-
duced by each constraint weighed by its information can be
calculated as:

dij(x)2 = rij(x)TΩijrij(x) (2)

and therefore the overall error, assuming all the constraints to
be independent, is given by:

D2(x) =
∑

dij(x)2 =
∑

rij(x)TΩijrij(x) (3)

The solution to graph-SLAM problem is to find a state x∗ that
minimizes the overall error.

x∗ = argmin
x

∑
rij(x)TΩijrij(x) (4)

Iterative approaches such as Gauss-Newton or Levenberg
Marquadt can be used to compute the optimal state estimate
[10].

We divide the constraints into two sets; S contains sequen-
tial links and R contains links from place recognition. Since
all constraints are mutually independent, the error in (3) be
written as:

D2(x) =
∑

(i,j)∈S

dij(x)2 +
∑

(i,j)∈R

dij(x)2 (5)

We further divide the set R into n disjoint subsets Rk, where
each subset only contains topologically related constraints
(sequences of links that relate similar portions of the robot
trajectory) such that R = ∪nk=1Rk and ∀(i 6= j)Ri ∩Rj = ∅.
We term each of theses subsets as “clusters”.

Then the error for set R can be written as:

∑
(i,j)∈R

dij(x)2 =

n∑
c=1

∑
(i,j)∈Rc

dij(x)2 =

n∑
c=1

dRc(x)2 (6)

where dRc(x)2 is the error contributed by the cth subset. This
simply means that the overall error introduced due to place
recognition constraints is the sum of the individual errors of
each cluster.

Assuming that we do not have any outliers in odometry,
the error in (3) is caused practically only by the loop closing
links. Once we iterate to find the optimal state, the error in the
odometry is no longer zero. This increase in odometry error
gives us a measure of the metric change that must take place so
that the graph conforms to place recognition constraints. This
error will be smaller when the corresponding place recognition
constraints are correct. It is because comparatively smaller
metric change is needed as opposed to the change required by
wrong constraints. Moreover, clusters that suggest the same
change would cause smaller errors among them as compared
to conflicting clusters. By measuring how much errors the
clusters introduce, we can detect which clusters agree with
each other. A point to note here is that even though odometry
drifts with time, it is still a useful measure of the underlying
topology of the graph.

Consider the case, when each of these clusters is the only
place recognition constraint in the graph. In absence of other
clusters, this cluster can make the odometry converge to an
acceptable solution, where acceptable means that the overall
errors are within some statistical threshold. If this cluster alone
deforms the graph enough to make the solution unacceptable,



it is highly likely that this cluster is suggesting a wrong place
recognition decision. This forms the basis of our intra-cluster
test. Mathematically, for any cluster Ri to be individually
consistent, the following two conditions must hold:

D2
G(x) =

∑
(i,j)∈Ri

rij(x)TΩijrij(x) +
∑

(i,j)∈S

dij(x)2 < χ2
α,dG

(7)
where dG are the degrees of freedom of the whole graph.
Moreover,

D2
l (x) = rij(x)TΩijrij(x) < χ2

α,dl
, (i, j) ∈ Ri (8)

ensures that if there are any outliers within the cluster they
are omitted. dl are the degrees of freedom of each constraint.
If the criterion in (7) is not met, the whole cluster is rejected.
Constraints not meeting the criterion in (8) are removed from
the cluster and the rest of the links are accepted as being
individually consistent.

Similarly, for a selected subsets of clusters C, we term the
clusters in C to be jointly consistent if:

D2
C(x) =

|C|∑
c=1

∑
(i,j)∈Rc

rij(x)TΩijrij(x) < χ2
α,dC (9)

and

D2
G(x) = D2

C(x) +
∑

(i,j)∈S

rij(x)TΩijrij(x) < χ2
α,dG (10)

This first criteria ensures that the present clusters are consistent
with each other while the second one ensures the consistency
of the clusters with the odometry links.

We also advocate that rather than testing a single hypothesis
on its own, clusters are more robust and identify regions of
loop closures rather than single pose-to-pose correspondence.
This is the case when appearance based place recognition
systems generate hypotheses. Having said that, our method
does not pose any restriction on the minimum number of links
in a cluster and can handle clusters composed of just single
links.

An overview of our method is provided in the following
section.

A. Method

1) Clustering: Our method starts by collecting topologi-
cally related loop closing hypotheses into clusters. Clusters
represent sequences of loop closures that relate similar por-
tions of trajectory. We use a simple incremental way to group
them using timestamps. We proceed as follow: with the first
loop closure that arrives, we initialize the first cluster R1.
Then, we decide according to (11) if the next loop closure
arriving belongs to same cluster or a new cluster needs to be
initialized.

ωi,j ∈ Rk ⇐⇒
∃ωp,q ∈ Rk | ‖ti − tp‖ ≤ tg ∧ ‖tj − tq‖ ≤ tg (11)

where ti means the timestamp related to the node i, and tg can
be selected according to the rate at which the place recognition
system runs. This threshold defines the cluster neighbourhood.
In our experiments, we consider loop closing hypotheses less
than tg = 10s apart to be a part of the same cluster.

A cluster is considered closed if for tg time no new links
are added to it.

2) Intra-Cluster Consistency: After clustering hypotheses
together, the next step is to compute the internal consistency
for each cluster. This involves optimizing the pose graph with
respect to just this single cluster and checking which links
satisfy the χ2

α,dl
bound. The links inside the cluster that do

not pass this test are removed from the cluster and are no
longer considered in the optimization. Algorithm 1 describes
the intra-cluster consistency. This procedure is carried out for
each cluster and it can be performed as soon as a cluster is
closed.

Algorithm 1 Intra Cluster Consistency
Input: poses , slinks , cluster of rlinks
Output: cluster

add poses, slinks to PoseGraph
PoseGraphIC ← PoseGraph
add cluster to PoseGraphIC
optimize PoseGraphIC
if D2

G < χ2
α,dG

then
for each rlinkl ∈ cluster do

if D2
l < χ2

α,dl
then

Accept rlinkl
else

Reject rlinkl
end if

end for
else

Reject cluster
end if

3) The RRR algorithm: Having established intra-cluster
consistency, we now look for clusters that are mutually con-
sistent. We initially assume that all the clusters are consistent
and carry out optimization by including all of them in the
optimization problem. Once optimized, we check for any links
whose residual error satisfies the χ2 test. The clusters to which
these links belong are then selected and added to the candidate
set to be evaluated for joint consistency according to eqs. (9)
and (10).

We accept the clusters that are jointly consistent and term
them goodSet . At this point, we remove the goodSet from
the optimization and try to re-optimize with the remaining
clusters. The idea behind doing so is that in the absence of
the good clusters, other correct clusters will be able to pass
the threshold tests. A good analogy would be that of athletes
running in a special kind of race in which the observer is
only able to see who crosses the finish line first. In order to



Algorithm 2 Inter Cluster Consistency
Input: goodSet , candidateSet , PoseGraph
Output: goodSet , rejectSet

PoseGraphJC ← PoseGraph
add (goodSet , candidateSet) to PoseGraphJC
rejectSet ← {}
optimize PoseGraphJC
if D2

C < χ2
α,dC

∧D2
G < χ2

α,dG
then

goodSet ← {goodSet , candidateSet}
else

find the clusteri ∈ candidateSet with largest CI
remove clusteri from candidateSet
rejectSet ← clusteri
if ¬isempty candidateSet then

(goodSet , rSet)←
Inter Cluster Consistency(goodSet , candidateSet)
rejectSet ← {rejectSet , rSet}

end if
end if

Algorithm 3 RRR
Input: poses , slinks , R set of clusters containing rlinks
Output: goodSet of rlinks

add poses, slinks to PoseGraph
goodSet ← {}
rejectSet ← {}
loop

PoseGraphPR ← PoseGraph
currentSet ← R\{goodSet ∪ rejectSet}
candidateSet ← {}
add currentSet to PoseGraphPR
optimize PoseGraphPR
for each clusteri ∈ currentSet do

if ∃D2
l < χ2

α,dl
| rlinkj ∈ clusteri then

candidateSet ← {candidateSet , clusteri}
end if

end for
if isempty(candidateSet) then

STOP
else
s = goodSet .size
(goodSet , rSet)←
Inter Cluster Consistency(goodSet , candidateSet)
if goodSet .size > s then

rejectSet ← {}
else

rejectSet ← {rejectSet , rSet}
end if

end if
end loop

establish which runner would end up in the second position,
we ask the winner to not participate in the race and conduct
the race again. We continue asking the winner each time to
join the previous winners, to see who will take the next spot.
The winners in our case are the member of the goodSet . This
is show in Algorithm 2. As long as we keep finding clusters
that are jointly consistent with the goodSet , it will grow.

An important point to mention here is the use of the
rejectSet . The reject set contains all the clusters that we
checked in the last iteration but found them to be inconsistent
with the goodSet . We omit them from the optimization process

until something is added to the goodSet . The main algorithm
is given in the Algorithm 3. The algorithm terminates when
we are no longer able to find any clusters to add to the
candidateSet .

Long term operation: The algorithm described above works
on data from a single session. In order to integrate multiple
sessions, we run the algorithm on the first session, select
the goodSet and optimize the graph using these correct loop
closing hypothesis. The optimized graph is then used in con-
junction with the second session. The loop closing hypothesis
from the first are carried over to the second session, and we
now look for a goodSet that is correct for both the sessions.
In this way, we can extend the algorithm for n sessions, at the
end of which we have a goodSet consisting of hypothesis that
have support from all the n sessions.

IV. EXPERIMENTS

We have evaluated the RRR algorithm on an indoor environ-
ment (Bicocca campus) from the RAWSEEDS project [15], an
outdoor environment (Bovisa campus) from the same source,
and on the NewCollege dataset [19]. Also, we show two multi-
session experiments, 5 large scale sessions on Bicocca, and
36 sessions on a changing environment of an office floor at
the University of Lincoln [4]. As front-end we use the BoW
algorithm of [1], and as back-end we use the g2o framework,
configured with the Gauss-Newton method and four iterations.

A. Comparisons

In the experiments, the RRR algorithm is used in combina-
tion with a weak place recognition algorithm (BoW), that is
known to exhibit many false positives. In this way, we test the
robustness of RRR to incorrect loop closing links. We compare
our method with a branch and bound search (BBS) traversal
of the whole solution space, computationally very demanding
but guaranteed to find the largest subset of hypotheses that is
jointly consistent (according to Algorithm 2). We also compare
with Olson’s method [12] and a modified version (see below).
This is for verification within a single session.

Olson’s method is mainly used for outlier rejection and find-
ing inliers that are in some sense consistent with each other.
Without any modifications and calculating the consistency
just within the “groups” (that we call clusters), the method
has very low recall. We believe this happens because a few
very well connected prevent other correct but comparatively
weakly connected clusters for entering the final solution. In the
modified version, we calculate the consistency between all the
given loop closure links. This makes the algorithm unreliable
because Dijkstra links are derived from long trajectory links.
At the same time, the adjacency criterion takes a long time to
compute. The only advantage is that it dilutes the effect of a
few very well connected clusters. The results for this method
are shown in Fig. 1. The method accepts some false positive
loop closures mainly because of the aforementioned reason.

BBS traverses the solution space to compute the largest
set of clusters of loop closing hypotheses that are jointly
consistent. As can be seen in Fig. 2, BBS selects the same



Pr = 0.69
Re = 0.85
RMSE=55.5m

(a) Loop closures from a BoW system.

Pr = 1.0
Re = 0.42
RMSE=3.0m

(b) Output of the Olson’s method.

Pr = 0.98
Re = 0.78
RMSE=1.8m

(c) Modified Olson’s method’s output.

Pr = 1.0
Re = 0.65
RMSE=1.0m

(d) Output of our proposal.

Fig. 1. Experiment used for comparisons against other possible approaches. This is one of the sessions from Bicocca campus shown in Fig. 4(b). Inset:
result of optimization carried out using accepted links. We show the precision (Pr), recall (Re) and root mean square error (RMSE) for each method.

Fig. 2. Effect of the RRR algorithm over the precision (top), recall (middle),
and root mean square error (bottom) compared with the base approach
(BoW+GC) as we sweep the parameter α− of the BoW system. This is over
the same Bicocca session used in Fig. 1. The curves for BBS in each case
are superimposed with those of RRR

clusters as our method but at the expense of much higher
computational complexity.

To further evaluate the performance of the RRR algorithm,
we sweep the minimum confidence level of acceptance α−

of the BoW system, and compute the precision, recall, and
the root mean square error of the optimized graph for the
constraints for each value of α−. In Fig. 2, we show the result
without our method (base) and with our RRR algorithm. RRR
obtains full precision in the whole range and better root mean
square error than the base approach. It is important to note that
although sacrificing recall, we obtain better metric accuracy.
This shows the disastrous effect of just a single false positive
on the optimization process. When the base approach reaches
full precision our method accepts all the constraints, obtaining
the same recall and errors.

We test the RRR algorithm in several real datasets. The
odometry information comes from visual+wheel, laser, and
stereo odometry, for outdoors-Bovisa (Fig 3(a)), mixed-Bovisa
(Fig. 3(b)), and NewCollege (Fig. 3(c)) respectively. We use
BoW as place recognition with geometrical checking (GC)
based on finding the rigid-body transformation with stereo
correspondences. In Fig. 3 we show the results. It can be seen
that our method successfully rejects all the wrong loop closing
links.

B. Long term operation

The task of long term navigation involves robustly joining
multiple sessions into a single map. For this purpose, we
use multiple sessions from RAWSEEDS [15]. The dataset
contains five overlapping runs in indoor environment and
provides wheel odometry, laser scans, and images from a
camera mounted on the robot.

In order to use the RRR algorithm, we need some form of
odometry as well as the loop closing hypotheses. We use laser
scans from the dataset to compute the laser odometry using
a simple scan matcher, see Fig. 4(a), and use BoW plus GC,
see Fig. 4(b), to compute appearance based place recognition
links. These are the inputs to our method.

We run our method incrementally on the five sessions.
The first iteration of the algorithm works with data from
the first session and computes the set of consistent clusters.
The optimized first session is shown at the top-most position
in Fig. 5. In the inset, the input to this step can be seen.
This optimized session is used in conjunction with the second
session and combined reasoning is done on both. During the
second session, due to lack of evidence and odometry error we
accept some false positives, the effect of which can be seen
in the 3D plot. During the next session, as more evidence
becomes available, we are able to recover from the previous
mistake. As can be seen from the successive improvement in
the overall estimate, our method is able to take into account
more evidence as it become available and incorporate it into
the overall map. The last (bottom most) in Fig. 5 is the final
map estimate based on evidence and combined reasoning on



(a) Outdoors (Bovisa campus) (b) Mix outdoors-indoors (Bovisa campus) (c) Outdoors (New College)

Fig. 3. Results of the RRR algorithm over different environments. The loop closures are obtained from an appearance based place recognition algorithm.
Odometry is in blue, accepted links in green and rejected ones in red.

(a) Laser odometry given by a simple scan matching.

(b) Loop closing constraints from BoW+GC , α− = 0.15

Fig. 4. Bicocca multi-session experiment in an indoor environment

all the sessions.
In the same way, we run our method on the 36 sessions of

Lincoln dataset. This dataset provides omnidirectional images
and laser scans. We compute the odometry by simple scan
matching of the laser returns, see Fig. 6(a), and the loop
closure constraints taking the best match comparing the GIST
descriptors of the Omnidirectional images as described in [16],
see Fig. 6(b). The final result after our proposal is shown in
Fig. 7. The algorithm takes 40.5s to complete, with no false
positives.

V. DISCUSSION

The method proposed in this work is applicable for metric
pose graph formulation. Any SLAM system that constructs

Fig. 5. Results for long term operation using Bicocca Feb-25a(blue), Feb-
25b(green), Feb-26a(red), Feb-26b(cyan) and Feb-27a(magenta) Inset: Input
to current step. 3D plot : Optimized graph as output of our method



a metric map can be used in conjunction with our system
for loop closure verification over time. The method is not
restricted to any type of sensor. The pose graph, for example
can be constructed from either wheel odometry, laser odometry
or visual odometry or any other sensor. Similarly, the method
is independent of the mechanism used for place recognition.
This gives our method the flexibility to be used together with
any SLAM front end that can generate a pose graph and the
corresponding place recognition constraints.

For timing information, we compare our method again with
BBS and Olson’s method. BBS explores an interpretation tree
which, in the case of our extension to clusters, is a binary tree.
The worse case complexity of BBS is therefore O(2n) where
n is the number of clusters. In our experiment, after clustering
and intra-cluster consistency (6s), the algorithm took 12s for
a binary tree of depth 20. There are randomized versions to
check joint consistency such as the RJC algorithm proposed
by Paz et al. [13] or the 1-point RANSAC algorithm proposed
by Civera et al. [2]. They are based on the random sample
consensus paradigm [5], and need a minimum number of data
points to fit a model. In the case addressed here, with arbitrary
trajectories and without prior knowledge of the number of loop
closure areas, there is no clear way to determine the minimum
number of data points needed to fit the model.

For Olson’s method, the most expensive operation is the
computation of the consistency matrix. For N hypotheses the
complexity of calculating the consistency matrix is O(N2). It
should be noted that N , the number of hypothesis, is much
larger than the number of clusters n. In our experiment, the
running time for this method was 8s.

For n clusters, our method needs to carry out n intra-cluster
consistency tests. More over, in the worst case if all the clusters
are considered for joint consistency after the first optimization
and are not jointly consistent, we need n joint consistency
checks. This makes our method linear O(n) in the number of
clusters. The actual cost of carrying out each step, however,
depends on the underlying graph and the optimization method
used. For the experiment in Fig. 1 , our method takes 8s
to calculate the solution, spending 6 of them in clustering
and intra-cluster consistency checks. As we mentioned above,
these two operations can be carried out in real time.

As we mentioned earlier, currently we consider that links
less than tg = 10s apart belong to the same cluster, in
accordance with the usual frequency of the place recognition
algorithm, 1fps . A smaller value for tg results in more clusters,
and a corresponding increase in computational cost, with
precision-recall not being affected. A large value can result in
low recall because large clusters containing valid loop closing
links could be rejected more frequently.

One of the main advantages of our method is that while
finding a solution similar to BBS, the algorithm works in O(n)
as opposed to O(2n). For the first two sessions of the long
term experiment in Fig. 5, BBS takes 1537.6s compared to
our method which runs in 34.8s . For the complete experiment,
BBS takes over two days to come up with a solution, while
our method takes 314.5s .

(a) Laser odometry. (b) Loop closure constraints.

Fig. 6. Lincoln dataset.

Fig. 7. Results of our RRR algorithm for long term operation using the 36
sessions of Lincoln dataset. Left: Loop closure constraints accepted. Center
and right: Optimized graph as output of our method.

The long term experiments demonstrate the importance
of incorporating new evidence session by session to realize
possible previous failures. It is important to mention here that
as the number of sessions continue increasing, further criteria
need to be taken into account in order to join and/or forget past
evidence. For instance, if we track the performance history of
the clusters we can decide to forget some of them if they are
always rejected (as would be the case for perceptual aliasing).
Also we can fuse verified clusters, from different times, if they
are metrically close after the optimization is carried out.

Here, we assumed that the errors in odometry links are
small. We think that it is a plausible assumption given the
higher frame rate of odometry w.r.t place recognition rate
and the state of the art in odometry techniques. Nevertheless,
if a failure occurs the approaches of “weak links” [9] or
“anchor nodes” [11] can be used to separate the experiment
into different sessions.

VI. CONCLUSION

The task of long term operation requires that at any given
time, the map be updated using all the available information.
Therefore, a method is required that can reason based all on
the available evidence and as a result produce the best map
estimate in light of that evidence. We therefore use the term
“loop closing over time” for methods that are able to reason
about the consistency of loop closing hypotheses not only in
space but also along the time dimension. In this work, we have



presented a novel consistency based approach to this problem.
We support with evidence our claim that the estimation process
itself can be used to establish the validity of loop closing
hypotheses. We back up our claims with experiments showing
the long term operation abilities of our system as well as its
robustness when compared to state of the art data association
methods.

As future work, we will explore extensions of our RRR
algorithm in order to consider the possibility of incorrect
odometry links.
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[10] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige,
and W. Burgard. g2o: A general framework for graph
optimization. In Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), Shanghai, China, May 2011.

[11] J. McDonald, M. Kaess, C. Cadena, J. Neira, and J.J.
Leonard. 6-DOF Multi-session Visual SLAM using
Anchor Nodes. In European Conference on Mobile
Robotics, ECMR, 2011.

[12] E. Olson. Recognizing places using spectrally clustered
local matches. Robotics and Autonomous Systems, 57
(12):1157–1172, December 2009.

[13] L. M. Paz, J. Guivant, J. D. Tardós, and J. Neira. Data
association in O(n) for divide and conquer SLAM. In
Proc. Robotics: Science and Systems, Atlanta, GA, USA,
June 2007.

[14] A. Ranganathan and F. Dellaert. Online probabilis-
tic topological mapping. The International Journal of
Robotics Research, 30(6):755–771, May 2011. doi: 10.
1177/0278364910393287. URL http://ijr.sagepub.com/
content/early/2011/01/23/0278364910393287.abstract.

[15] RAWSEEDS. Robotics advancement through
Webpublishing of sensorial and elaborated
extensive data sets (project FP6-IST-045144), 2009.
http://www.rawseeds.org/rs/datasets.

[16] A. Rituerto, A. C. Murillo, and J. J. Guerrero. Semantic
labeling for indoor topological mapping using a wear-
able catadioptric system. to appear in Robotics and
Autonomous Systems, special issue Semantic Perception,
Mapping and Exploration, 2012.

[17] G. Sibley, C. Mei, I. Reid, and P. Newman. Vast-scale
outdoor navigation using adaptive relative bundle adjust-
ment. The International Journal of Robotics Research,
29(8):958–980, 2010.

[18] J. Sivic and A. Zisserman. Video Google: A text retrieval
approach to object matching in videos. In Proceedings
of the International Conference on Computer Vision,
volume 2, pages 1470–1477, October 2003.

[19] M. Smith, I. Baldwin, W. Churchill, R. Paul, and
P. Newman. The new college vision and laser data
set. The International Journal of Robotics Research,
28(5):595–599, May 2009. ISSN 0278-3649. doi:
http://dx.doi.org/10.1177/0278364909103911. URL http:
//www.robots.ox.ac.uk/NewCollegeData/.

[20] N. Sünderhauf and P. Protzel. Brief-gist - closing the
loop by simple means. In Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on,
pages 1234 –1241, sept. 2011. doi: 10.1109/IROS.2011.
6094921.

http://dx.doi.org/10.1002/rob.v27:5
http://ijr.sagepub.com/content/early/2010/11/11/0278364910385483.abstract
http://ijr.sagepub.com/content/early/2010/11/11/0278364910385483.abstract
http://ijr.sagepub.com/content/29/8/941.abstract
http://ijr.sagepub.com/content/early/2011/01/23/0278364910393287.abstract
http://ijr.sagepub.com/content/early/2011/01/23/0278364910393287.abstract
http://www.robots.ox.ac.uk/NewCollegeData/
http://www.robots.ox.ac.uk/NewCollegeData/

	Introduction
	Related Work
	Our proposal: the RRR algorithm
	Method
	Clustering
	Intra-Cluster Consistency
	The RRR algorithm


	Experiments
	Comparisons
	Long term operation

	Discussion
	Conclusion

