Realizing, Reversing, Recovering : Incremental Robust Loop Closing
over time using the iRRR algorithm

Yasir Latif, César Cadena, and José Neira

Abstract— The ability to detect failures and reconsider infor-
mation over time is crucial for long term robust autonomous
robot applications. This applies to loop closure decisions in
localization and mapping systems. This paper describes a
method to analyze all available information up to date in
order to robustly remove past incorrect loop closures from the
optimization process. The main novelties of our algorithm are:
1. incrementally reconsidering loop closures and 2. handling
multi-session, spatially related or unrelated experiments. We
validate our proposal in real multi-session experiments showing
better results than those obtained by state of the art methods.

I. INTRODUCTION

A mobile robot can use a place recognition system to find
loop closure constraints that help improve the estimation of
its pose in the environment and the precision of the model of
the environment being built. Any failure in the loop closure
process will surely corrupt the state estimation. The robot is
expected to continue exploring the environment, even with
the corrupt estimation, gathering more information that al-
lows it to realize any failures and to recover the accurate state
estimation. No matter how robust a place recognition system
might be, there always exists the possibility of getting just
one false positive loop closing constraint. That possibility
increases in long term operations and in persistent mapping
tasks, where failures may happen over time. But with the
arrival of new evidence, the estimation can be corrected.
Only by collecting more evidence over time can we detect
and correct these mistakes in loop closing.

In this work we propose an incremental algorithm to
realize that the place recognition system has generated
wrong constraints, remove them if necessary, and recompute
the state estimation. The proposal is based on evaluating
the consensus among constraints with two main novelties:
(1), making the best possible decision according to the
information provided up to date by the place recognition
and odometry systems; and (2), the ability to decide over
loop closures between different session without requiring
connectivity through weak links.

Our method works with the pose graph formulation. It is
a part of the back-end of a SLAM system and is therefore
independent of the type of sensor used for odometry or loop
closing. All our method needs is a system that is able to
generate a pose graph for the sequential pose constraints

Yasir Latif, César Cadena, and José Neira are with the Instituto de Inves-
tigacion en Ingenieria de Aragén (I3A), Universidad de Zaragoza, Zaragoza
50018, Spain. {ylatif, ccadena, jneira}@unizar.es.

This research has been funded by the Direccion General de Investigacion
of Spain under projects DPI2009-13710 and DPI2009-07130.

and a place recognition system for the non-consecutive loop
closure constraints.

In the next section we discuss relevant work related to
this subject, and highlight the need for a robust loop closing
over time method. In section III we detail our proposal and
carry out real experiments in section IV. Finally, in section
V discussion and conclusions about the work are presented
along with possible future work.

II. RELATED WORK

Several approaches to multi-session SLAM have been
presented in robotics literature in the recent past. Konolige
and Bowman [1] presented a stereo visual odometry system
that works together with a bag of words place recognition
system towards building multiple representations of dynamic
environments over time. Multiple map stitching, recovery
for odometry failures, loop closing, and global localization
rely on the robustness of the place recognition system.
“Weak links” are removed when place recognition is able
to close loops, making it prone to errors when the place
recognition closes loops wrongly. Similarly, McDonald et al.
[2] presented a multi-session 6 DOF Visual SLAM system
using “anchor nodes”. In their approach, place recognition
is assumed to be perfect and its output is trusted every
time. Sibley et al. [3] presented a relative bundle adjustment
approach for large scale topological mapping. They show
an example of mapping from London to Oxford, over a
trajectory of about 121-km. They also use appearance based
place recognition and are therefore also in danger of making
wrong decisions in case of incorrect place recognition. All
of these approaches to large scale and persistent mapping
rely on a place recognition system with zero false positives.
This is usually achieved at the cost of a high false negative
rate, and thus loss of precision. But even the most robust
place recognition systems [4], [5] cannot guarantee 100%
accuracy.

Some approaches delay decision making and maintain
multiple topologies of the map with an associated belief
for each one [6], [7]. Ranganathan and Dellaert [6] follow
this approach using a Rao-Blackwellized particle filter. Their
method is also unique in the sense that it uses the estimation
process itself to reason about possible loop closures. Tully
et al. [7] also maintain multiple hypotheses with a forest
expansion considering all possible loop closures. However,
those approaches do not explicitly show how their system is
affected by and recovers from wrong loop closures. Tully et
al. favour the smaller graph in cases of perceptual aliasing
inducing to collapse it and not recover it from the failure.

A similar estimation-based reasoning approach using pose
graph formulation was presented by Sunderhauf and Protzel
[8] which is a robust SLAM back end using “switch factors”.
The central idea is to penalize those loop closure links during
graph optimization that deviate from the constraints they
suggest between two nodes. Similar to our approach, they
change the topological structure of the graph based on iden-
tification and rejection of wrong loop closures. In contrast,
however, they assess the validity of every loop closure on
its own, without forming a general consensus using all the
available information. In cases where there are a number of
hypotheses that suggest the same but wrong loop closings
(for instance due to perceptual aliasing in long corridors),
overall consensus helps us in rejection of such outliers. Their
method suggests a continuous function governing the state
of “switch factors” which does not make sense in most of
the cases like traversal paths. We show comparisons against
their method in the experimental section.

III. OUR PROPOSAL

We propose a robust consistency-based loop closure veri-
fication method using the pose graph formulation. It is based
on the observation that correct loop closure in conjunction
with odometry can help in the detection of wrong loop
closures. Our method follows the line of work in which the
estimation process itself is used in making the distinction
between correct and false loop closures.

The graph based formulation for SLAM, the so-called
“graph-SLAM” models robot poses as nodes in a graph
where relative transformations from odometry or loop clo-
sures form edges or “constraints”. Let x = (1 ...2,)7 be
a vector of parameters that describe the configuration of the
nodes. Let w;; and €2;; be the mean and the information of
the observation of node 5 from node i. Given the state x, let
the function f;;(x) be a function that calculates the perfect
observation according to the current state. The residual r;;
can then be calculated as

rij(X) = wij — fij(x) (1

Constraints can either be introduced by odometry which
are sequential constraint (j = ¢+ 1), or from a place recog-
nition system which are non-sequential. The amount of error
introduced by each constraint weighed by its information can
be calculated as

dij (%) = 7ri; ()T Qijri5(x) (2)

and therefore the overall error, assuming all the constraints
to be independent, will be:

D*(x) = dij(x)* = ri;(0 " Qri;(x) (3)

The solution to graph-slam problem is to find a state x*
that minimizes the overall error. Iterative approaches such
as Gauss-Newton or Levenberg-Marquadt can be used to
compute the optimal state estimate [9].

We can divide the constraints into two sets; S containing
sequential links and R containing loop closure links. Since
all constraints are independent of each other, the error in 3
can be written as

DX(x)= > di(x)’+ Y dij(x)?)
(i,5)€S (i,5)€R
We can further divide the set R into n disjoint subsets
Ry, where each subsets only contains topologically related
constraints (links that relate similar portions of the robot
trajectory) such that R = U}'_, Ry and V(i # j)R;,NR; = 0.
We term each of theses subsets as “clusters”.
Then the error for set R can be written as

Sood®? =Y Y di(x)?*=>"dp.(?)

(i,7)ER c=1 (i,j)ER.

where dr_(x)? is the error contributed by the cth subset.
This simply means that the overall error introduced due to
loop closure constraints is the sum of the individual errors
of each cluster.

Assuming that initially we do not have any outliers in
odometry (if there are errors in odometry the front-end can
detect them and split the experiment in two sessions), the
error in (3) is caused practically only by the loop closing
links. Once we iterate to find the optimal state, the error in
the odometry is no longer zero. This increase in odometry
error gives us a measure of the change in the topology
that must take place in order for the graph to conform to
loop closure constraints. This error will be smaller when
the corresponding loop closures are correct because of the
comparatively smaller change needed in topology of the
graph as opposed to the change needed when loop closures
are wrong. Moreover, clusters that suggest the same change
in topology would cause smaller errors among them as com-
pared to clusters that suggest different changes in topology.
By measuring how much errors the clusters introduce, we
can detect which clusters agree with each other. A point to
note here is that even though odometry drifts with time, it
is still a useful measure of the underlying topology of the
graph.

A. Method

1) Clustering: Our method starts by collecting topologi-
cally related loop closing hypotheses into clusters. Clusters
are sets of loop closure links that relate similar portions of
the trajectory. We use a simple incremental way to group
them related in time and in space, given that each pose has
an associated timestamp. We proceed as follows: with the
first loop closure that arrives, we initialize the first cluster
R;. Then, we decide according to (6) if the next loop closure
arriving belongs to same cluster or a new cluster needs to
be initialized:

w;ij € R <=

Jwpg € Ry | It —tpll Stg Aty —tgll <ty (6)

where ¢; means the timestamp related to the node ¢, and
ty can be selected according to the rate at which place
recognition system runs. This threshold defines the cluster
neighbourhood. In our experiments. We consider loop closing
hypotheses that are less than 10 second apart to be part of the
same cluster. A cluster is considered closed if after ¢, time
no more links are added to it. The completion of a cluster
triggers our algorithm.

2) Cluster-wise individual compatibility: After clustering
hypotheses together, the next step is to compute the individ-
ual compatibility for each cluster. This involves optimizing
the pose graph with respect to just this single cluster and
checking which links satisfy the corresponding x2? bound.
The links inside the cluster that do not pass this test are
removed from the cluster and are no longer considered
in the optimization. Algorithm 1 describes the cluster-wise
individual compatibility. This procedure is carried out for
each cluster as soon as it is closed.

Algorithm 1 Cluster_IC

Input: poses, slinks, cluster of rlinks
Output: cluster
add poses, slinks to PoseGraph
PoseGraphlC < PoseGraph
add cluster to PoseGraphlC
optimize PoseGraphIC
it D < X2, ;. then
for each rlink; € cluster do
it D < x2 4 then
Accept rlink;
else
Reject rlink;
end if
end for
else
Reject cluster
end if

3) The RRR algorithm: Having established individual
compatibilities, we now look for clusters that are mutually
consistent. We initially assume that all the clusters present
in the optimization process are consistent and carry out
optimization by including all of them in the optimization
motor. Once optimized, we check for any links whose
residual error satisfies the x2 test. The clusters to which these
links belong are then selected and added to the candidate set
to be evaluated for joint compatibility. Joint compatibility in
this case implies that the Mahalanobis distance contributed
by the clusters and the overall Mahalanobis distance of the
optimized graph should be less than their corresponding 2.
This is shown in algorithm 2.

We accept the clusters that are jointly compatible and term
them as the good set. At this point, we remove the good
set from the optimization and try to re-optimize with the
remaining clusters. The idea behind doing so is that, in the
absence of the good clusters, other correct clusters will be
able to pass the x? tests. As long as we keep finding clusters
that are jointly compatible with the good set, the good set
will grow.

Algorithm 2 JC

Input: goodSet, candidateSet, PoseGraph
Output: goodSet, rejectSet
PoseGraphJC < PoseGraph
add (goodSet, candidateSet) to PoseGraphJC
rejectSet < {}
optimize PoseGraphJC
if D? < xi,d AD2, < Xi,da” then
goodSet < {goodSet, candidateSet}
else
find the cluster; € candidateSet with largest CI
remove cluster; from candidateSet
rejectSet < cluster;
if —isempty candidateSet then
(goodSet,rSet) < JC(goodSet, candidateSet)
rejectSet < {rejectSet,rSet}
end if
end if

Algorithm 3 RRR

Input: poses, slinks, R set of clusters containing rlinks
Output: goodSet of rlinks
1: add poses, slinks to PoseGraph
2: goodSet + {}
3: rejectSet + {}
4: loop
5. PoseGraphPR < PoseGraph
6: currentSet < R\{goodSet U rejectSet}
7.
8

candidateSet < {}
:add currentSet to PoseGraphPR
9: optimize PoseGraphPR
10: for each cluster; € currentSet do

11: it 3D} < X2, 4, | rlink; € cluster; then

12: candidateSet + {candidateSet, cluster; }
13: end if

14: end for

15: if isempty(candidateSet) then

16: STOP

17: else

18: s = goodSet.size

19: (goodSet,rSet) + JC(goodSet, candidateSet)
20: if goodSet.size > s then

21: rejectSet < {}

22: else

23: rejectSet < {rejectSet,rSet}

24: end if

25: end if

26: end loop

An important point to mention here is the use of the reject
set. The reject set contains all the clusters that we checked
in the last iteration but found them to be incompatible
with the good set. We omit them from the optimization
process until something is added to the good set in the
next iteration. The idea behind doing so is the following:
during the previous iteration of the algorithm, we found
some clusters to satisfy the threshold test, and therefore we
evaluated their compatibility with the good set. We found
some of them to be incompatible and they were added to the
reject set. If no changes were made to the good set and we
include the clusters from the reject set in the optimization
again, the algorithm would suggest the same clusters for

evaluation but we already know them to be inconsistent. The
reject set therefore acts as an accumulator of clusters that
are inconsistent with the present good set. The reject set is
therefore maintained until something is added to the good
set and is cleared once something is appended to the good
set. The main algorithm is given in the algorithm 3.

The algorithm terminates when we are no longer able to
find any clusters to add to the candidate set.

B. Incremental Implementation

The method proposed can be carried out in an incremental
fashion, it being triggered every time we close a cluster. We
calculate the individual compatibility for this cluster. If it
is not individually compatible, it is discarded and nothing
further is done, otherwise we execute an incremental version
of algorithm 3.

The incremental version of algorithm 3 works this way:
for the first cluster that passes IC, we begin with an empty
goodSet and rejectSet (line 2-3), otherwise values evaluated
at the previous step are used. It should be mentioned that
the set R contains only the clusters that have passed the
IC test. The loop (line 4-26) is then carried out with the
following changes: in JC (line 19), rather than consider-
ing only the members of candidateSet for elimination, we
consider the member of goodSet as well. This is to ensure
that if further evidence become available against member of
goodSet, they can be eliminated. Since we are building a
consensus gradually over time, anything that is rejected by
JC is inconsistent. Therefore we do not clear the rejectSet
in the incremental implementation (line 20-24). Finally, once
we have calculated the goodSet, we optimize the graph with
it, giving us the best estimate at the current point in time.

C. Multi-Session

Our method is able to work with multiple sessions without
needing “weak links” or “anchor nodes”. We argue that
if there is a correct loop closure between two sessions,
this information alone is enough to align the two sessions
correctly after optimization. But this information may or
may not be available or may arrive in the system after a
long time. Therefore, we need to deal with multiple session
in a unified manner, so that if the loop closing information
between different sessions becomes available, we can align
the sessions, otherwise we maintain up-to-date estimate of
all the sessions independently.

In order to achieve this, we make the observation that for
n connected sessions, the goodSet denoted by G* at time
t can be partitioned into n subsets such that G* = U ;| G!
and Vi # j : Gi N GY% = (). Since there are no clusters that
link these sets, they are independent of each other, and we
can calculate/expand the G; for each subset independently.
Similar partitioning can be done for the candidateSet. Once
we compute/update the required Gﬁ*l we combine all the
subsets to form the new G'*!. Mathematically,

G iRRR(G',C") = UL iRRR(G},CY) (T)

where C"® is the corresponding candidateSet, at time t.

This formulation helps us in detecting loop closing clusters
that connect two different sessions. As soon as such a
cluster forms a part of the goodSet, we have the up-to-date
information on how the two sessions, linked by this cluster,
are related to each other. This formulation also ensures that
only the session to which new loop closing clusters are being
added are updated, because for the other sessions the Cf
would be empty, indicating that we can not reason about
them given this new information.

IV. EXPERIMENTS

In this section, we present the result of experiments for
our proposal using multiple and diverse datasets. We use the
popular Intel dataset (~420m) collected at the Intel Research
Laboratory (Seattle, WA), which is available with the down-
loaded version of g20. Also, we use the New College dataset
(~2.2km), an outdoors environment from [10], and a multi-
session dataset (~4km) in an indoor environment (Bicocca
campus) from the RAWSEEDS project [11]. Our method can
use any graph optimizer (e.g. iISAM [12] or g20 [9]), for this
work we use g2o configured with Gauss-Newton method and
four iterations.

A. Comparisons

We first compare in batch mode our method (i.e. RRR
algorithm) against our own implementation of Sunderhauf’s
approach to robust back-end [8] using the parameters and
functions for switch links as given in their paper. The
optimizer used was g2o as well, with two configurations:
Levenberg-Marquadt and Levenberg-Marquadt with Huber
Robust Kernel (RK) width=0.1. We evaluate both configura-
tions against our method in a batch mode over one indoor
session (Bicocca Feb 25b) with a laser scan matcher as
odometry and a bag-of-words plus stereo geometrical check-
ing as place recognition system. The results are shown in Fig.
1. Sunderhauf’s method accepts false positive loop closures
in the zones where there are several contiguous links because
they all weigh in the same direction in the optimization and
for this reason the switch links are not able to reduce their
effect on the graph. The same method with RK works much
better, but given that their method never completely rejects
the wrong loop closures, the accuracy of the estimation is
affected. In Table I we show he Absolute Trajectory Errors
(ATE) computed using the Rawseeds Metrics Computation
Toolkit provided by the RAWSEEDS Project. Also, we show
the computational time required in each case.

Our proposal efficiently keeps only the loop closures that
form the majority consensus among them and with the
odometry constraints. It takes half of the time compared to
Sunderhauf’s method and the accuracy is better than 1m,
0.12% of 774m of travel in this session. The ATE distribution
is shown in Fig. 1(e) for our method and for Sunderhauf’s
with RK activated.

-20 0 20 40

80
60
40

Q

20

) [|
0
-20
-40
-60

60 80 20 0 20 40 60 80

(a) Input.

80

- =

60

40

2 3

-60

-20 0 20 40 60 80

(d) Output of our proposal.
Fig. 1.

(b) Output of Sunderhauf’s method.

(c) Output of Sunderhauf’s method with Robust Kernel.

350

Our proposal
= = = Sunderhauf’'s—RK

250

Frequency

2 2.5 3

(0] 0.5 1

1.5
Position Error [m]

(e) Absolute trajectory errors distributions.

(a): One of the sessions from Bicocca campus shown in Fig. 2(a)(bottom) with laser odometry and the constraints from the place recognition

system. (b): The result of Sunderhauf et. al [8], (c) with Robust Kernel activated, left: the loop closures, light to dark red proportional to the value taken
by the switch factors, right: optimized graph (blue) and ground truth (green). (d): The result of our proposal, left: the final loop closures in the good set,
right: optimized graph (blue) and ground truth (green). (e) the distribution of the Absolute Trajectory Errors for the final pose graphs against the ground

truth (c,right) and (d,right).
| Mean (m) | Std. Dev (m). | Time (sec)

Sunderhauf’s 14.72 14.00 20.9

Sunderhauf’s RK 1.120 0.430 18.7

Our method 0.964 0.367 10.1
TABLE I

SUMMARY OF RESULTS FOR FIG. 1.
B. Persistent Mapping

The task of persistent mapping involves robustly maintain-
ing and when information becomes available joining multiple
sessions into a single map.

For the Intel dataset, g20 gives us an optimized graph
with sequential constraints and true loop closures. In order
to use it as multi-session and to evaluate our proposal, we
split the dataset in four sessions after each loop in completed
deleting the corresponding odometry constraint. The first
pose in the resultant session is assumed to be at the origin
and we transform each session according to that. Finally, we
corrupt the dataset with 600 wrong loop closures, grouped
in 200 randomly generated clusters of 3 links each. In Fig.
2(a)(top) we show the resultant sessions with the original
and generated loop closures.

The New college dataset provides laser scan and images.
We use a precomputed visual odometry! and again, we
split this odometry in three session deleting one of the
sequential constraints and changing the reference frame for
each session. We obtain the loop closure constraints with

I Available at http://www.robots.ox.ac.uk/NewCollegeData/
index.php?n=Main.Downloads

a bag-of-words place recognition system, as described in
[5], plus a stereo geometrical checking (BoW+gc). In Fig.
2(a)(middle) we show the resultant sessions with the detected
loop closures.

The rawseeds dataset contains five overlapping runs in
indoor environment and provides wheel odometry, laser scans
and images from a camera mounted on the robot. We use
laser scans from the dataset to compute the laser odometry
using a simple scan matcher and use the BoW+gc to compute
the loop closure constraints. Each session starts with its own
origin. In Fig. 2(a)(bottom) we show the laser odometry for
the five sessions with the detected loop closures.

The results for the three datasets are shown in Fig. 2(b). It
can be seen that we have recovered the correct loop closing
as well as the relationships between the different sessions.
In Fig. 2(c) we show the computational times required by
the iRRR algorithm vs. the step when is triggered. For
C clusters, our method needs to carry out C' individual
compatibility tests. More over, in the worst case if all the
clusters are considered for joint compatibility after the first
optimization and are not jointly compatible, we need C' joint
compatible checks. This makes our method linear O(C') in
the number of clusters which agrees with the linear behaviour
shown in Fig. 2(c).

V. DISCUSSION

In this paper, we have presented a method of robustly
solving the loop closing problem in a multi-session context.

2000

4000

6000
steps

8000

10000 12000

Fep25a Feb25b Feb26a Feb 26b Feb 27
[}

time (s)
o 4 M w A ® N o ©

0 10000 20000 30000 40000
steps

(a) Inputs.

(b) Output of our iRRR algorithm.

(c) Computational time.

Fig. 2. Multi-session experiments. (a) We show the inputs, an odometry (each session is a different color and height) and loop closures (pink color). (b)
The output of our proposal, each session on different height (left) and the floor-view (right). On top, the Intel dataset divided by us into four sessions and
corrupted by 600 wrong loop closures. In the middle, the NewCollege dataset with using visual odometry divided into three sessions and with a BoW+gc
place recognition system. Bottom, the Bicocca multi-session experiment from the RAWSEEDS project, odometry was computed by a laser scan matcher
and the loop closures by a BoW+gc place recognition system. Each session is in its own frame of reference. (c) We show the computational time spends

by our proposal when is triggered.

Our method is able to generate the best estimate of the
possibly multiple maps with all the information available
until the present moment simultaneously solving for the
transformation relating the sessions.

We compare our method against the one proposed by [8]
and we show that our method is able to deal with loop closing
robustly. The aim of SLAM is not just to construct a good
looking map, but the map should be usable for high level
tasks such as path planning. In that context, loop closing
links provide traversability information and the robot can
take these path into account in order to calculate a path.
“Switch factor” may provide a good estimate of the map but
since they are governed by a continuous function they allow
soft decision making with regards to loop closings decisions,
which is in principle a boolean decision. In some cases, as
has been shown in the comparison section, links are partially
disabled, which is not a desirable effect.

Previously methods such as anchor nodes or weak links
have been proposed to deal with the problem of connectivity
in multiple sessions. Weak links while providing connectivity
also introduce unnecessary uncertainty into the optimization
process. Anchor nodes on the other hand provide linkage

when there is a common observation but they do not show
how to deal with errors in data association. We have shown
that those two approaches are not required as our proposal
can handle those unconnected session without sacrificing
performance.

Our method relies on consensus between the loop closing
links and assumes that there is only one correct configuration
of the graph on which most of the loop closing links agree.
The links that do no agree, suggest random configurations.
What this means is that we are able to deal with “random
conspiracy” among loop closures. The second, more worry-
ing kind is the “organized conspiracy” in which another set
of loop closure agree on a different, wrong configuration of
the graph. To this end, if everything else is the same, we can
trust the odometry links to support the true configuration.
Secondly, place recognition systems can be trusted to give
either the correct place recognition or random false loop
closings, this will prevent an organized conspiracy from
forming. Even still, perceptual aliasing can give rise to such
conspiracy, as is the case shown for Bicocca Feb 25b.

In order to ensure robustness to such configurations, the
incremental implementation optimizes the graph after every

iteration. In the next iteration, this ensures that if the cluster
is individually compatible, it will converge fast enough to
end up in the candidateSet, but if the cluster is inconsistent
with the current goodSet, the chances of it ending up in the
candidate set will be less because other clusters will converge
faster than it. Secondly, we maintain the rejectSet, which
ensures that any cluster that does not agree with the current
goodSet is not considered again. While we can not ensure the
optimal configuration after each step in case of an organized
conspiracy, we can ensure recovery if this becomes clear later
on.

The method proposed in this work is applicable to the
global metric pose graph formulation. The method is not
restricted to any type of sensor for obtaining odometry or
loop closures. SLAM algorithms that only generate local
consistent maps such as [13] or [14] do not preserve the
global geometric relationships between poses and therefore
our method can not be applied to them.

We have demonstrated the performance of our algorithm
in multiple real cases, in multi-session experiments and
compared against the state of the art in robust back-end
against false loop closures. Immediate future work consists in
considering that odometry links can also include false links.
In these cases, these links can be eliminated from the graph,
breaking down a single session into a two multi-session case,
that can be treated accordingly.

REFERENCES

—

] K. Konolige and J. Bowman, “Towards lifelong visual maps,” in Intel-
ligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International
Conference on. 1EEE, 2009, pp. 1156-1163.

[2] J. McDonald, M. Kaess, C. Cadena, J. Neira, and J. Leonard, “6-
DOF Multi-session Visual SLAM using Anchor Nodes,” in European
Conference on Mobile Robotics, ECMR, 2011.

[3] G. Sibley, C. Mei, 1. Reid, and P. Newman, “Vast-scale outdoor nav-
igation using adaptive relative bundle adjustment,” The International
Journal of Robotics Research, vol. 29, no. 8, pp. 958-980, 2010.

[4] M. Cummins and P. Newman, “Appearance-only SLAM at large
scale with FAB-MAP 2.0,” The International Journal of Robotics
Research, 2010. [Online]. Available: http://ijr.sagepub.com/content/
early/2010/11/11/0278364910385483.abstract

[5] C. Cadena, D. Gdlvez-Loépez, J. Tardds, and J. Neira, “Robust place
recognition with stereo sequences,” IEEE Trans. Robotics, 2012, to
appear.

[6] A. Ranganathan and F. Dellaert, “Online probabilistic topological
mapping,” The International Journal of Robotics Research, vol. 30,
no. 6, pp. 755-771, May 2011. [Online]. Available: http://ijr.sagepub.
com/content/early/2011/01/23/0278364910393287.abstract

[71 S. Tully, G. Kantor, and H. Choset, “A unified bayesian framework
for global localization and slam in hybrid metric/topological
maps,” The International Journal of Robotics Research, 2012.
[Online]. Available: http://ijr.sagepub.com/content/early/2012/01/16/
0278364911433617.abstract

[8] N. Sunderhauf and P. Protzel, “Towards a robust back-end for pose
graph slam,” in Proc. IEEE Int. Conf. Robotics and Automation, 2012.

[9] R. Kiimmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g20: A general framework for graph optimization,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), Shanghai, China,
May 2011.

[10] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman, “The
new college vision and laser data set,” The International Journal of
Robotics Research, vol. 28, no. 5, pp. 595-599, May 2009. [Online].
Available: http://www.robots.ox.ac.uk/NewCollegeData/

[11] RAWSEEDS, “Robotics advancement through Webpublishing of sen-

sorial and elaborated extensive data sets (project FP6-IST-045144),”

2009, http://www.rawseeds.org/rs/datasets.

[12] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
Smoothing and Mapping,” IEEE Trans. on Robotics, TRO, vol. 24,
no. 6, pp. 1365-1378, Dec 2008.

[13] C. Mei, G. Sibleyy, M. Cummins, P. Newman, and I. Reid,
“Rslam: A system for large-scale mapping in constant-time using
stereo,” International Journal of Computer Vision, vol. 94, pp.
198-214, 2011, 10.1007/s11263-010-0361-7. [Online]. Available:
http://dx.doi.org/10.1007/s11263-010-0361-7

[14] H. Strasdat, A. Davison, J. Montiel, , and K. Konolige, “Double
window optimisation for constant time visual SLAM,” in /EEE In-
ternational Conference on Computer Vision (ICCV), 2011.

