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_Abstract—This paper addresses the problem of path plan- the covariance matrix, entropy and mutual informatid@]-f
ning considering uncertainty criteria over the belief space. [12]. In this paper, we devise a path planner that relies on a
Specifically, we propose a path planning algorithm that uses a 4ye| determinant-based metric to take into account the ef-

novel determinant-based measure of uncertainty and areduced]c ts of tai d | reduced h tati
representation of the environment, in order to obtain the ects of uncertainty and a novel reduced graph representati

minimum uncertainty path from a roadmap. Our proposal that speeds up the search process. As a result, our planner
does not require a priori knowledge of the environment due can be seamlessly integrated with recently proposed graph-
to the construction of the roadmap via a graph-based SLAM pased SLAM algorithms such as iISAMJ], FrameSLAM
algorithm. We report experimental results of our proposal in [14], or RSLAM [15]

four datasets that show its feasibility to obtain the minimum ' . ' .

uncertainty path towards an autonomous navigation framework  1he reminder of the paper is structured as follows: Sec-
and we also show an improvement in the computation time with tion Il presents a brief overview of the uncertainty metrics

respect to the state of the art. commonly utilized in path planners that use the belief space
and presents in more detail the metric used in our approach.
I. INTRODUCTION In sectionlll, we define the problem we are dealing with:

Path planning solely in th&.. (i.e. only taking into “how to plan the minimum uncertainty path in a roadmap like

’)ll H
account geometric constrains) does not guarantee thqsaﬁéésgfur;' H_ﬁzgggmr\é druecpgdrtfeOgésg?]ttgti%linoﬁ[]éh;:vlijn;?nsmae
of a robot navigating over those pathg[3]. The above grap P

problem stems from the uncertainty generated by the inhergrqg ?Sdgéizmr:gzn;bgzzgng'st;r'oir:]tt: crl:tzn\t/:/fi)tlr:h; u:]amrﬁ;se d
noise in the localization and control systems of a rob LAM al or%thm Sectionv reysentsgex erimentagll triF;Is of
working in a real environment, which is the result of the 9 ' P P

imperfect data it gathers. Moreover, a robot navigates 8a' approach in real datasets. Moreover, we compare our

environment in order to fulfil a task, and an initial conditio Met0d 2gainst the state-of-the-art and show an improvemen

to effectively complete any task is to accurately reagdriori in the c.omputat|on “’T‘e- Finally, sectiodil presents some
initial position established in the workspace where thﬁ(taconclusmns and possible future work.

will be performed. For example, a mobile manipulator aiming

at opening a door using visual servoing, needs to position it Il. UNCERTAINTY MEASURES

manipulator within the range of the doorknobs. S . . .
Historically, the uncertainty metrics were first proposed
In order to overcome the above problem, several works

such as Mihaylova et al4], Gonzalez et al.§] and Lambert " the Theory of Optimal Experiment Design (TOED)E]

et al. [3] have proposed the integration of the uncertain 1 context and were named like an alphabet with the
. ) brop 9 : uffix optimality attached to them to denote the origin. Ehes
in the path planning process. Recently Prentice and Rpy

have proposed to plan over the so-called belief space. The Hnsetrlcs or criteria coming from the TOED aim at capturing

of the belief space in the proposal of different path plasner N |d.ea of Whther or ant the uncelztamty represented by a
such as He et al.7], Prentice et al. §] and Valencia et al. Covariance matrix., 'S_ arge _Or _sma ) ) .
[9] have proved experimentally that taking into account th Formally, an uncertalnty crlte_rlon hgs to define a function
uncertainty in the planning process leads to an accurate %ant maps a covariance matrix of size: I to a scalar,
safe navigation process.

All the aforementioned path planners, which use the belief ¢p:X =R Q)
space, rely on metrics or criteria that measure or quariiy t
uncertainty or its dual, the information of certain configur ~ This function has to be positive homogeneous, isotonic
tion in the space. Among the most used metrics are: trace(o€. order preserving) and concaver].

A compendium of functions fulfilling the above require-
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TABLE | . .
SUMMARY OF UNCERTAINTY METRICS E-optthat are approximationslf] [17] [24]. A summary of

the uncertainty metrics is presented in Table

Metric Formulation
A-opt trace(X) = i AL I1l. PATH PLANNING IN THE BELIEF SPACE
k=1

Deopt | exp (l—l Xli log( /\k)> Assuming that th.e data struc_ture represe.nting the e.nviron—
K= ment (.. a map) is a graph-like structuré.g, a metric-
E-opt max(A) topological representation), we could use the well-known
Probabilistic Roadmaps (PRM) algorithm to generate a dis-
crete graph inCg. (i.e. the set of configuration at which
follows, the robot does not intersect any obstadg]). Given a start
! configuration Xsiart Of @ robot and a goal configuration
trace(X) = Z)‘k ) Xaoal, Within the above discrete graph, we are aiming at
k=1 finding the minimum uncertainty path between them.
« D-optimality criterion D-opf) [19]: This criterion aims  Planning for the minimum uncertainty path cannot be
at capturing the full dimension of the covariance matrizgone in theCyee, because it cannot guarantee the Safety

and at first glance it can be defined as we are aiming for. Therefore, it seems more natural to
! use another space such as the beli8f or information
det(X) = HAk (3) () space §] [8] [2]. Autonomous path planning in the
1 belief or information space, as any autonomous path planner

relies heavily on metrics that quantify the cost of moving
J[om one configuration to another. In the case of the belief
space, the most common used metrics are the ones based on
TOED (uncertainty) and on information theory. In both cases
and unlike the metrics used in the configuration space, the

approximation of the error ellipsoid. Ut fth tainty or inf i i
. . evolution of the uncertainty or information metrics are fnon
According to the TOED 1€] [17] D-opt gives the most monotonic, and so far there is no optimistic heuristic that

accurate approximation of the uncertainty enclosed in tg‘ﬁows the use of the plethora of well-know and effective
covariance matrix, but in the context of active SLAM or

planning under uncertaintyl(]-[12] and [21], have shown non-uniform path planner such as: A2€] or D" [27] [28].

that using the definition in3) to compute theD-opt does There IS no.doubt that imposing a discretization .Of the
. " environment with the PRM algorithm, prevents any discrete
not produce a meaningful metric€. the value gets stuck at

z€r0) search algorithm from guaranteeing that it will find the

In [22] a novel computation form of the uncertaintym|n|mum uncertainty path. However, within a discrete graph

. . . built upon a tractable computing premise according to the
criterion based on the determinant of the covariance mat . . : . - .
) . . M algorithm, is possible to find the minimum uncertainty
is presented. There tHa-opt is computed as follows:

o E-optimality criterion E-op? [20]: This criterion in-
tends to minimize the maximum eigenvalue of the c
variance matrix®. The main advantage of this criterion
is the simplicity of its computation, but it is a rough

path.
. ! Another issue with the PRM algorithm is its require-
exp | ! Zlogo‘k) (4)  ment ofa priori knowledge of the environment to produce
k=1

the roadmap. This constraint limits the feasibility of the
that stems from the family of uncertainty criteria proposeightegration of the path planner in an autonomous robot
by Kiefer in [23], framework. An approach based on a SLAM algorithm can
1 1 produce a roadmap of the environment and overcomes the
Op(8) = [I” trace(37())] o () aforementioned issue. Specifically, we can use a graptdbase
This family of uncertainty criteria is valid in the range ofSLAM algorithm such as: iSAM 13], FrameSLAM [L4],
0 < p < oo for a covariance matrix) of sizel x! associated or RSLAM [15], that does not need beforehand knowledge
to a designt. Moreover, the case; and the boundary casesof the environment and can produce a good estimate of the
¢o and ¢, are the already known A, D and E-optimalityenvironment enclosed in a pose/feature graph.
criteria. It is worth mentioning here that although the robot starts to
Using @) instead of 8) in order to compute thé®-opt plan assuming that the environment is static, this assompti
in the planning under uncertainty or active SLAM contexwill not hold as it executes several steps of the planned. path
has the advantage of producing a meaningful uncertairifhis happens when a previously traversable path is no longer
metric i.e. it does not get stuck at zero and evolves reavailable or new information such as loop closures update
sembling the uncertainty encompassed in the covariartbe belief of the robot about the map topology. Therefore
matrix. Furthermore, according to the TOHD-opt is the planning algorithms should be able to perform fast replagni
uncertainty criterion that by definition truly captures théoth to deal with changes in the environment as well as the
complete dimension of the uncertainty, unlike theoptand changes in the belief of the robot, whenever the need arises.



Algorithm 1 FaMUS algorithm relationships between poses form the edges. Landmarks are

Require: used to generate the relationship between consecutives pose
o A pose graph map of the environme@t and as a result the graph at the end contains only the robot
« A initial posen, and a goal pose,. trajectory. Due to the nature of the SLAM problem, the
Ensure: graph has sparse connectivity since most of the constraints
« The path with the minimum accumulated uncertaintsire sequential.e. they link two consecutive poses in time.
cost from the pose to the posen,. There are also non consecutive constraints that arise from
1: Vn,; € G : calculateD-opt loop closures when the robot revisits an already explored
2: Vn; € G : find reachable neighbours and add edges area. These constraints reduce the overall uncertaintlyein t
3: Gq < ReduceGraplfG) trajectory. We argue that the pose graph formulation is good
4: minPathg < DijsktraSearch{,ng,Ga) for path planning because it already provides information
5: return ReconstructPath{in Pathy,Gq) about potentially traversable paths since the robot hasdyr

been through this trajectory during mapping. The pose graph

Algorithm 2 The graph  reduction process:SLAM is. inherently. sparse because there are a Iot. more

ReduceGraph(;,n,,G) consecutive constraints than loop closures. We aim to éxplo
this sparsity in order to achieve speed-up in path planning.

Require:
« The original graphG with the associated cost for o. Metric Calculation
each node . .
- For every vertex in the graph, we compute the marginal-
« Ainitial posen, and a goal pose,,. : k :
Ensure: ized covariance and calculate the metric. In a pose graph
’ s formulation, the marginal uncertainty of a node is a fusion
o The decision graplizq . X -
1 for n € G do of the uncertainty for all possible paths from the origin of
) ! the map §]. In our approach, we only take the marginal
2 if [[n;|| =2 then . . .
3 start i covariance of the pose into account when calculatingDihe
4 cost < 0 opt criterion. For a more general case of pose-feature graph,
) . a similar approach can be taken by taking into account the
5: while ||n;|| = 2,n; # ng,n; #n, do s . :
visible landmarks from the vertex under consideration.
6: cost + cost + f(n;) S . .
S For the marginalized covariance, we calculate the Eigen-
7 11+ 1 . . .
8 end while values and compute the metric given i4).(The cost of
. travelling from a vertexV; to a vertexV; is equal to the
9 AddEdge(start-1,1,cosE) value of the metric calculated &i;
10: RemoveVertices(start> i-1, G) 3.
11: end if B. Increasing traversability
12: end for Inherently, the pose graph formulation results in a graph
13: return G Y: P grap grap

that is sparsely connected where different trajectorieoaly
linked if a loop closing constraint is established between
them. It might happen that even though two trajectories lie
very close to each other, there are no edges between the

In this section, we presenFaMUS (Fast Minimum corresponding vertices because the place recognitioersyst
Uncertainty Search): an algorithm capable of planning thevas unable to close the loops. If such vertices lie within
minimum uncertainty path using a pose graph formulation gbme distance of the current robot location, then the node
the SLAM problem. Similar approaches have been previousty considered reachable from the current node and an edge
applied in a SLAM context by He et al7] using a cost is added to it. It should be noted that this threshold is very
function based on the trace of the covariance matrix and kgstrictive and is set smaller than the robot’s diameterc&i
Valencia et al. §] using an entropy based cost function. Oua pose graph does not contain any information about the
proposal, in contrast, uses a cost function based orDthe structure of the environment, it is possible that, for exEmp
opt over a reduced graph for fast minimum uncertainty pathe two trajectories lie on the opposite side of a wall and
planning. hence are not reachable from each other. Therefore, we set

Algorithm 1 shows the pseudo-code for the FaMUS algdhis threshold to be very conservative in order to add edges
rithm. It requires a pose graph mand.produced by a graph that are already within the reach of the robot. We use a
based SLAM algorithms), a starKgart) and goal Kaoa) fast KD-tree based nearest neighbour search to find possible
pose within the graph. It ensures the path with minimumeighbours for every node in the graph.
uncertainty fromXstart 10 X@oar according to theD-opt o )
(c.f. sectionll and @)). C. Decision Points

In a pose graph formulation of the SLAM problem, each Vertices that are only connected by sequential constraints
robot position is represented as a vertex in a graph and tieve a degree twae. |V;|| = 2; one connecting it to the

IV. OUR APPROACH



previous pose in time, and one connecting it to the next. Ifhe cost of travelling fromD; to D, is then calculated as
robot arrives at such a vertex from one direction, it can only ;.1 = ¢1 »,+¢n,i41 (SiNCec; 1 = f(O1)). We can therefore
move in the other direction. At these vertices, the robotitas add a new edge with this weight between the decision points
choice but to continue travelling till it reaches a vertexttwi and effectively eliminaten vertices and the corresponding
a degree greater than two. At that point, the robot can takdges.

one of then — 1 paths, where: is the degree of the vertex. We do this for all the decision points in the graph and as
We call such vertices “decision points”, since the robot hasresult we get the decision graph, which contains only the
to make a decision about which path to take. Formally, decision points and the associated costs of travelling dsstw

decision point can be defined as them. We argue that the two representation are equivalent an
there is no loss of information when constructing the deaisi

W, eG:||Vi]| >2 (6) graph from the original graph, therefore they are provably

equivalent when used as input for path planning over belief

Poses that participate in a loop-closure constraint for ace
the decision points because they connect to more than two
vertices. Between two decision points, the robot must ¥ollo ) o
the trajectory connecting them. The given start and engxert=: S€arching over the decision graph

in the graph are also considered decision points. Given a start and a goal vertex, we can search over the
decision graph to find the minimum uncertainty path. For

the search, we use the classic Dijsktra algorithm. When the

The complexity of search algorithms such as depth-firgkcision graph is constructed, we keep the start and the goal
or breadth-first depends on the number of vertices apdices as decision points as well.

pumber of edges in.the graph bging searched. While efﬁCienLI'he overall algorithm is presented in algoritiirand the

|mpIementat|onrs] %X'fSt tha;[jex_plon SPUS otr)multf|-thre.ane, method used for constructing the decision graph is given in
p:jopos.e e;]met Oh for [je ucing the nulrln ero hvehrtlc‘fj _aafgorithmz. Since the search is carried out over the decision
edges in the graph in order to sequentially search the C'St;raph, the resulting path only contains the decision points

graAph (fjgster. d ler b decisi ) Algorithm 1, Line 4). For actually carrying out the motion,
s discussed earlier, between two decision points t e robot needs to know which vertices to follow in order to

robot has to follow Fh_e squentlal_lmks. Therefore, we cafl q| petween decision points. Therefore, we reconsthect
connect the two decision points using new edges that enc h in the original graph by adding the segments between

the cost of the underlying sequential links, and remove t cision point that the robot must traverse to reach one

sequential links. The cost of travelling the same Ve_rtic%%cision point from anotheire. line 5 of algorithm1. This
whether encoded by the actual number of links or just &, pe gone efficiently by maintaining a lookup table for

single link is therefore the same. We call this graph comgst ¢, pair of decision points that have a common edge in the
of only decisions points as “Decision Graph”. An examplaecision graph

can be seen in Figl(d-f). In (d) the reduction can be
seen very clearly because most of the map consists of long
corridors without any loop closures. All such corridors are

reduced to single edges which connect decision points thajy, this section we present the methodology and the results
are present at the end of the corridors. (The corners of g 5 set of experiments carried out in order to validate and
corridors becomes decision points because the robot tUgs uate our minimum uncertainty path planning approach.

slowly, generating a lot of poses at the same place Whighe e for the experimentation, simulated and real data,
are then linked together by the neighbourhood seacch (from indoor and outdoor environments. Specifically for the

SectionIV-B)). Another example is in figl-(f) where the |4 data, we use the Bicoccad, New college B0, and

arrow points to two trajectories that are reduced to singife| datasets and for the simulated counterpart, we use the
edges. o o Manhattan dataset. The Manhattan and Intel datasets are
In order to have an insight into how the decision grapf 4ijaple with the downloaded version of g21].

is constructed, let us consider a sequence .of vertices;l.o obtain the graph based map needed by our approach,
Di[O: . "O”]D”l’. \{vhere.there are: sequential Imk's be- the FaMUS algorithm, we use the g2o0 graph optimi&ad] [
tween the two decision points. Let_the cost of travellingrfro with the Gauss-Newton method and one iteration. We use
D, to Oy bec¢; ; and that of travelling fron0,, to D,;, be g2o to efficiently calculate the marginal covariances ndede
¢n,i+1- We can calculate the cost ,, as to calculate theD-opt criterion. Fig.1 shows the optimized

D. Decision Graph

V. EXPERIMENTS

n map for the Bicocca, Intel and New college dataset used in
cin =Y f(0)) (7)  the experiments.
=1 In the remainder of this section, we show the result of

where f(-) is the metric under consideration. This giveshe proposed algorithm using the above simulated and real
us the accumulated cost of travelling the sequential linkdatasets. Specifically, we will show:
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Fig. 1. (a)-(c) Graph map with full vertices (red) and edgdse}p (d)-(f) Graph map with reduced vertices (red) and edtigkt grey). Figure best

viewed in color.

TABLE Il

« the ratio of reduction in the number of vertices and edge$ercentace REDUCTION OF VERTICES AND EDGES BY THEAMUS

in the graph for each dataset due to the computation of ALGORITHM
the decision graph : :
. a MonteCarlo simulation that validates the resultant Daw@set | \Vertices Edges | Vertices | Edges
minimum uncertainty path of the FaMUS algorithm. (name) (Full/Redu.) | (Full/Redu.) | Reduction | Reduction
« a comparison between the accumulated uncertainty|in Bicocca | 8358/980 | 8513/6936 | 88.27% | 18.52%
the resulting path of the FaMUS algorithm and the M€ 943/623 | 1837/1527 | 3393% | 16.87%
shortest path algorithm Manhattan | 3500/2469 | 5598/4863 | 29.45% | 13.12%
« timing comparisons with previous approaches. New College | 12816/1055| 13171/2624| 91.76% | 80.07%

Finally, we also investigate experimentally how many times
the minimum uncertainty path is different form the shortest

path and on average, what is the overlap between them. B. Hy: Are the minimum uncertainty path and the shortest
necessarily equal

A. Graph reduction One of the main reasons to plan in the belief space is that

A key aspect of our algorithm is the reduction of the vethe shortest path may be unsafe regarding the uncertamnty, i
tices and edges in the graph to a provable equal representathe task of planning from point A to point B. Here we put
used in order to increase the speed of searching the minimtontest this hypothesis by comparing the final accumulated
uncertainty path. uncertainty at the end point after following the shorteshpa

For the used datasets, table presents the percentualand the minimum uncertainty path generated by the FaMUS
reduction in the number of vertices and edges in the inpalgorithm.
graph based map needed by the FaMUS algorithm. We ran the above experiment 1000 times in each dataset,

The reduction achieved allows us to reduce the effectitieerefore obtaining 4000 trials in total. We select randoml
complexity of our algorithm in running time and hence ieach time the start and goal points with a separation of X
permits a small execution time, as is shown in sec#e@. meters in the euclidean sense. To make the results of the
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Fig. 3. (a)-(c) Shortest path (red) and minimum uncertaintth galue) generated by the FaMUS algorithm.(d)-(f) The cgponding accumulated

uncertainty for the above paths. Figure best viewed in color

experiment visually interpretable and to avoid misleadingave loop-closings in order to exploit previously visited
statistics, we show (Fi@) the ratio between the uncertaintieplaces to keep the uncertainty low, even though they may
of the paths generated by the FaMUS algorithm and thesult in longer path lengths.

shortest path. Also in tabldl we count how many times

Finally, it is worth mentioning that as expected, all the

the path are the same, completely different and how mawglues in Fig.2 are above one.g. we are actually obtaining

nodes are overlapped on average in each dataset.

Fig. 3 shows the resulting paths for some cases in the )
above experiment. It is worth mentioning here that the F&: 11Ming comparisons
MUS algorithm follows the classical active SLAM behaviour Table IV summarizes the average computation time of
demonstrated in the literatur@7] i.e. it prefers paths that 1000 experiments for each dataset. The experiment carried

the minimum uncertainty path).
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TABLE Il TABLE IV

PATHS GENERATED BY THEFAMUS ALGORITHM VS THE SHORTEST TIMING PERFORMANCE OF THEFAMUS ALGORITHM
PATH
Dataset # Vertices | # Edges| Time (ms)
Dataset = paths | != paths | % overlap Bicocca 8358 8513 1397.2
Bicocca 261 51 87.35% Intel 943 1837 215.180
Intel 170 74 62.59% Manhattan 3500 5598 839.97
Manhattan | 146 37 70.22% New College | 12816 | 13171 | 2143.2
New College 215 21 87.79%

real world environments are highly dynamic. As the robot
out is described in sectiov-B. The FaMUS algorithm moves through the planned path, it gathers new information
outperforms the state of the af][in this regard.e.g.for  that may alter the belief of the robot and may lead to a new
a graph with 13171 vertices and 12816 edges we calculgigth with lower uncertainty. Therefore, the robot should be
the minimum uncertainty path it in 2.14 seconds on averaggle to carry out fast replanning in order to deal with the
for approximately 700 vertice] does it in 5 seconds.e.  dynamic nature of the world. Our method, while generating
for 94.68% more vertices the FaMUS algorithm does it |fhe minimum uncertainty path under t|ﬁbopt criterion, is
57.13% less time. fast enough to replan in real time.

The timing given here were obtained using a researchThe proposed algorithm produces, via an exhaustive
implementation of the FaMUS algorithm in C++ on a 2.8earch, the minimum uncertainty path from an initial con-
GHz core 2 Duo Intel processor with 8 GB of memory undefguration of the robot until the goal configuration. We
Ubuntu 10.04 LTS. use an exhaustive search because the minimum uncertainty

Finally, it should be pointed out that for future comparpath in the belief space cannot be guaranteed in a greedy
isons, public dataset and natl-hocexamples should be usedsearch procedure due to the non-monotonic evolution of the
for timing comparison. This is because timing performanggncertainty. Moreover, the non-monotonic evolution prese
evaluation of this type of algorithms depends on the topploghe direct use of well known non-uniform path planning
of the graph (edges and vertices), thus a fixed, open aggorithm such as A* or D*. The proposal of optimistic
reproducible testbed is desirable. heuristics of the uncertainty should be the focus of future
work in the path planning under uncertainty research if we
desire to use the incremental, computationally tractakle y

In this paper, we have proposed a fast path plannim@mplete path planning solutions o7, [28] and [33],
algorithm capable of obtaining the minimum uncertaintyhpatamong others.
according to a reduced representation of the environmentComparing our algorithm with respect to the state of the
using a determinant-based criterion. In the literatureth® art, i.e. Valencia et al. §], our algorithm proposal differs
best knowledge of the authors of this article, this is thigom their work in two distinctive regards, namely the size
first use of the determinant-based criterion to quantify thef the processed graph and the generality of the input graph
uncertainty of the robot and environment in a path planningap representation. Concerning the first one, we devise a
under uncertainty context, therefore accurately capgutfire decision graph which is equivalent in terms of response to
complete dimension of the uncertainty according to thée full input graph but less costly, computationally spegk
TOED [1€] [17]. to evaluate. The work of Valencia et af][does not perform

Since the complexity of search algorithms is dependant tinis or any related step. Comparing the rest of the algorithm
the number of vertices and edges in the graph, a significast the graph search procedure, our work and theirs rely on
speed up can be achieved by reducing the size of the graphtHe same algorithm techniques.d. Dijsktra).
this work, we have proposed a novel representation termedApropos the second difference, our approach is more
“decision graph” which enables searching over only thoggeneral with regards to the range of SLAM algorithms it can
vertices in the graph where the robot can make a decisioperate on, the only restriction being that we have access
between at least two paths. This representation is provaldythe covariance at each node (as well as landmark if the
equivalent to searching over the whole graph in the seragorithm maintains it). We do not limit the graph input to
that both produce the same minimum uncertainty paths. Thisparticular class such as the produces by PoseSLAM as
means that although the decision graph has fewer verticks &falencia et al. 9]. In this regard, we also see as strength
edges than the original graph, there is no loss of informatiehe ability of our algorithm to use closed form equations to
when constructing the reduced representation. compute the uncertainty from the covariance matrix without

The FaMUS algorithm proposed here generates the minmaposing any distribution to the errors, in contrast to Yiaia
mum uncertainty path given a pose graph of the environmeat.al. that use a Gaussian distribution.

If the environment is static, as is assumed, the robot will be To conclude, we have presented a path planning algorithm
able to reach the goal and have the minimum uncertaintyiatthe belief space that generates the minimum uncertainty
the goal node. But this is a very strong assumption becaysgh according to thé-opt criterion by speeding up the

VI. DISCUSSION



search using a reduced graph representation of the envirfzat S. Ehrenfeld, “On the Efficiency of Experimental Desigrghe Annals
ment termed “decision graph” which exploits the sparsii%l]

inherent in the pose graph SLAM formulation. As futur
work, we are aiming at developing an active selection pro-
cedure of the nodes of the reduced graph in order to furttéf!
reduce the uncertainty in the navigation. Also, we aim at
performing field test, in heterogeneous environment, of ths]
proposed algorithm.
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