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Abstract—This paper addresses the problem of path plan-
ning considering uncertainty criteria over the belief space.
Specifically, we propose a path planning algorithm that uses a
novel determinant-based measure of uncertainty and a reduced
representation of the environment, in order to obtain the
minimum uncertainty path from a roadmap. Our proposal
does not require a priori knowledge of the environment due
to the construction of the roadmap via a graph-based SLAM
algorithm. We report experimental results of our proposal in
four datasets that show its feasibility to obtain the minimum
uncertainty path towards an autonomous navigation framework
and we also show an improvement in the computation time with
respect to the state of the art.

I. I NTRODUCTION

Path planning solely in theCfree (i.e. only taking into
account geometric constrains) does not guarantee the safety
of a robot navigating over those paths [1]–[3]. The above
problem stems from the uncertainty generated by the inherent
noise in the localization and control systems of a robot
working in a real environment, which is the result of the
imperfect data it gathers. Moreover, a robot navigates an
environment in order to fulfil a task, and an initial condition
to effectively complete any task is to accurately reacha priori
initial position established in the workspace where this task
will be performed. For example, a mobile manipulator aiming
at opening a door using visual servoing, needs to position its
manipulator within the range of the doorknobs.

In order to overcome the above problem, several works,
such as Mihaylova et al. [4], Gonzalez et al. [5] and Lambert
et al. [3] have proposed the integration of the uncertainty
in the path planning process. Recently Prentice and Roy [6]
have proposed to plan over the so-called belief space. The use
of the belief space in the proposal of different path planners
such as He et al. [7], Prentice et al. [8] and Valencia et al.
[9] have proved experimentally that taking into account the
uncertainty in the planning process leads to an accurate and
safe navigation process.

All the aforementioned path planners, which use the belief
space, rely on metrics or criteria that measure or quantify the
uncertainty or its dual, the information of certain configura-
tion in the space. Among the most used metrics are: trace of
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the covariance matrix, entropy and mutual information [10]–
[12]. In this paper, we devise a path planner that relies on a
novel determinant-based metric to take into account the ef-
fects of uncertainty and a novel reduced graph representation
that speeds up the search process. As a result, our planner
can be seamlessly integrated with recently proposed graph-
based SLAM algorithms such as iSAM [13], FrameSLAM
[14], or RSLAM [15].

The reminder of the paper is structured as follows: Sec-
tion II presents a brief overview of the uncertainty metrics
commonly utilized in path planners that use the belief space
and presents in more detail the metric used in our approach.
In sectionIII , we define the problem we are dealing with:
“how to plan the minimum uncertainty path in a roadmap like
structure?". SectionIV reports our path planner that uses a
novel graph-based reduced representation of the environment
and a determinant-based criterion to quantify the uncertainty,
and is designed to seamlessly integrate with a graph-based
SLAM algorithm. SectionV presents experimental trials of
our approach in real datasets. Moreover, we compare our
method against the state-of-the-art and show an improvement
in the computation time. Finally, sectionVI presents some
conclusions and possible future work.

II. U NCERTAINTY MEASURES

Historically, the uncertainty metrics were first proposed
in the Theory of Optimal Experiment Design (TOED) [16]
[17] context and were named like an alphabet with the
suffix optimality attached to them to denote the origin. These
metrics or criteria coming from the TOED aim at capturing
the idea of whether or not the uncertainty represented by a
covariance matrix,Σ, is large or small.

Formally, an uncertainty criterion has to define a function
φ that maps a covariance matrix of sizel × l to a scalar,

φ : Σ→ R (1)

This function has to be positive homogeneous, isotonic
(i.e. order preserving) and concave [17].

A compendium of functions fulfilling the above require-
ments can be found in [16] or [17]. Among the most com-
monly used functions or uncertainty criteria, for a covariance
matrix Σ with size l × l and eigenvaluesλl, are:

• A-optimality criterion (A-opt) [18]: This criterion targets
the minimization of the variance and it is defined as



TABLE I
SUMMARY OF UNCERTAINTY METRICS

Metric Formulation
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follows,

trace(Σ) =

l
∑

k=1

λk (2)

• D-optimality criterion (D-opt) [19]: This criterion aims
at capturing the full dimension of the covariance matrix
and at first glance it can be defined as

det(Σ) =
l
∏

k=1

λk (3)

• E-optimality criterion (E-opt) [20]: This criterion in-
tends to minimize the maximum eigenvalue of the co-
variance matrixΣ. The main advantage of this criterion
is the simplicity of its computation, but it is a rough
approximation of the error ellipsoid.

According to the TOED [16] [17] D-opt gives the most
accurate approximation of the uncertainty enclosed in the
covariance matrix, but in the context of active SLAM or
planning under uncertainty [10]–[12] and [21], have shown
that using the definition in (3) to compute theD-opt does
not produce a meaningful metric (i.e. the value gets stuck at
zero).

In [22] a novel computation form of the uncertainty
criterion based on the determinant of the covariance matrix
is presented. There theD-opt is computed as follows:

exp

(

l−1

l
∑

k=1

log(λk)

)

(4)

that stems from the family of uncertainty criteria proposed
by Kiefer in [23],

φp(ξ) = [l−1trace(Σp(ξ))]1/p (5)

This family of uncertainty criteria is valid in the range of
0 < p <∞ for a covariance matrix (Σ) of sizel×l associated
to a designξ. Moreover, the caseφ1 and the boundary cases
φ0 and φ∞ are the already known A, D and E-optimality
criteria.

Using (4) instead of (3) in order to compute theD-opt
in the planning under uncertainty or active SLAM context
has the advantage of producing a meaningful uncertainty
metric i.e. it does not get stuck at zero and evolves re-
sembling the uncertainty encompassed in the covariance
matrix. Furthermore, according to the TOEDD-opt is the
uncertainty criterion that by definition truly captures the
complete dimension of the uncertainty, unlike theA-opt and

E-opt that are approximations [16] [17] [24]. A summary of
the uncertainty metrics is presented in TableI.

III. PATH PLANNING IN THE BELIEF SPACE

Assuming that the data structure representing the environ-
ment (i.e. a map) is a graph-like structure (i.e. a metric-
topological representation), we could use the well-known
Probabilistic Roadmaps (PRM) algorithm to generate a dis-
crete graph inCfree (i.e. the set of configuration at which
the robot does not intersect any obstacle [25]). Given a start
configurationXStart of a robot and a goal configuration
XGoal, within the above discrete graph, we are aiming at
finding the minimum uncertainty path between them.

Planning for the minimum uncertainty path cannot be
done in theCfree, because it cannot guarantee the safety
we are aiming for. Therefore, it seems more natural to
use another space such as the belief (B) or information
(I) space [6] [8] [2]. Autonomous path planning in the
belief or information space, as any autonomous path planner,
relies heavily on metrics that quantify the cost of moving
from one configuration to another. In the case of the belief
space, the most common used metrics are the ones based on
TOED (uncertainty) and on information theory. In both cases,
and unlike the metrics used in the configuration space, the
evolution of the uncertainty or information metrics are non-
monotonic, and so far there is no optimistic heuristic that
allows the use of the plethora of well-know and effective
non-uniform path planner such as: A* [26] or D* [ 27] [28].

There is no doubt that imposing a discretization of the
environment with the PRM algorithm, prevents any discrete
search algorithm from guaranteeing that it will find the
minimum uncertainty path. However, within a discrete graph
built upon a tractable computing premise according to the
PRM algorithm, is possible to find the minimum uncertainty
path.

Another issue with the PRM algorithm is its require-
ment of a priori knowledge of the environment to produce
the roadmap. This constraint limits the feasibility of the
integration of the path planner in an autonomous robot
framework. An approach based on a SLAM algorithm can
produce a roadmap of the environment and overcomes the
aforementioned issue. Specifically, we can use a graph-based
SLAM algorithm such as: iSAM [13], FrameSLAM [14],
or RSLAM [15], that does not need beforehand knowledge
of the environment and can produce a good estimate of the
environment enclosed in a pose/feature graph.

It is worth mentioning here that although the robot starts to
plan assuming that the environment is static, this assumption
will not hold as it executes several steps of the planned path.
This happens when a previously traversable path is no longer
available or new information such as loop closures update
the belief of the robot about the map topology. Therefore
planning algorithms should be able to perform fast replanning
both to deal with changes in the environment as well as the
changes in the belief of the robot, whenever the need arises.



Algorithm 1 FaMUS algorithm
Require:

• A pose graph map of the environmentG
• A initial posens and a goal poseng.

Ensure:
• The path with the minimum accumulated uncertainty

cost from the posens to the poseng.
1: ∀ni ∈ G : calculateD-opt
2: ∀ni ∈ G : find reachable neighbours and add edges
3: Gd ← ReduceGraph(G)
4: minPathd ← DijsktraSearch(ns,ng,Gd)
5: return ReconstructPath(minPathd,Gd)

Algorithm 2 The graph reduction process:
ReduceGraph(ns,ng,G)

Require:
• The original graphG with the associated cost for

each node
• A initial posens and a goal poseng.

Ensure:
• The decision graphGd

1: for ni ∈ G do
2: if ‖ni‖ = 2 then
3: start← i

4: cost← 0
5: while ‖ni‖ = 2, ni 6= ns, ni 6= ng do
6: cost← cost+ f(ni)
7: i← i+ 1
8: end while
9: AddEdge(start-1,i,cost,G)

10: RemoveVertices(start→ i-1, G)
11: end if
12: end for
13: return G

IV. OUR APPROACH

In this section, we presentFaMUS (Fast M inimum
UncertaintySearch): an algorithm capable of planning the
minimum uncertainty path using a pose graph formulation of
the SLAM problem. Similar approaches have been previously
applied in a SLAM context by He et al. [7] using a cost
function based on the trace of the covariance matrix and by
Valencia et al. [9] using an entropy based cost function. Our
proposal, in contrast, uses a cost function based on theD-
opt over a reduced graph for fast minimum uncertainty path
planning.

Algorithm 1 shows the pseudo-code for the FaMUS algo-
rithm. It requires a pose graph map (e.g.produced by a graph
based SLAM algorithms), a start (XStart) and goal (XGoal)
pose within the graph. It ensures the path with minimum
uncertainty fromXStart to XGoal according to theD-opt
(c.f. sectionII and (4)).

In a pose graph formulation of the SLAM problem, each
robot position is represented as a vertex in a graph and the

relationships between poses form the edges. Landmarks are
used to generate the relationship between consecutive poses
and as a result the graph at the end contains only the robot
trajectory. Due to the nature of the SLAM problem, the
graph has sparse connectivity since most of the constraints
are sequentiali.e. they link two consecutive poses in time.
There are also non consecutive constraints that arise from
loop closures when the robot revisits an already explored
area. These constraints reduce the overall uncertainty in the
trajectory. We argue that the pose graph formulation is good
for path planning because it already provides information
about potentially traversable paths since the robot has already
been through this trajectory during mapping. The pose graph
SLAM is inherently sparse because there are a lot more
consecutive constraints than loop closures. We aim to exploit
this sparsity in order to achieve speed-up in path planning.

A. Metric Calculation

For every vertex in the graph, we compute the marginal-
ized covariance and calculate the metric. In a pose graph
formulation, the marginal uncertainty of a node is a fusion
of the uncertainty for all possible paths from the origin of
the map [9]. In our approach, we only take the marginal
covariance of the pose into account when calculating theD-
opt criterion. For a more general case of pose-feature graph,
a similar approach can be taken by taking into account the
visible landmarks from the vertex under consideration.

For the marginalized covariance, we calculate the Eigen-
values and compute the metric given in (4). The cost of
travelling from a vertexVi to a vertexVj is equal to the
value of the metric calculated atVj .

B. Increasing traversability

Inherently, the pose graph formulation results in a graph
that is sparsely connected where different trajectories are only
linked if a loop closing constraint is established between
them. It might happen that even though two trajectories lie
very close to each other, there are no edges between the
corresponding vertices because the place recognition system
was unable to close the loops. If such vertices lie within
some distance of the current robot location, then the node
is considered reachable from the current node and an edge
is added to it. It should be noted that this threshold is very
restrictive and is set smaller than the robot’s diameter. Since
a pose graph does not contain any information about the
structure of the environment, it is possible that, for example,
the two trajectories lie on the opposite side of a wall and
hence are not reachable from each other. Therefore, we set
this threshold to be very conservative in order to add edges
that are already within the reach of the robot. We use a
fast KD-tree based nearest neighbour search to find possible
neighbours for every node in the graph.

C. Decision Points

Vertices that are only connected by sequential constraints
have a degree twoi.e. ‖Vi‖ = 2; one connecting it to the



previous pose in time, and one connecting it to the next. If a
robot arrives at such a vertex from one direction, it can only
move in the other direction. At these vertices, the robot hasno
choice but to continue travelling till it reaches a vertex with
a degree greater than two. At that point, the robot can take
one of then− 1 paths, wheren is the degree of the vertex.
We call such vertices “decision points”, since the robot has
to make a decision about which path to take. Formally, a
decision point can be defined as

∃Vi ∈ G : ‖Vi‖ > 2 (6)

Poses that participate in a loop-closure constraint form
the decision points because they connect to more than two
vertices. Between two decision points, the robot must follow
the trajectory connecting them. The given start and end vertex
in the graph are also considered decision points.

D. Decision Graph

The complexity of search algorithms such as depth-first
or breadth-first depends on the number of vertices and
number of edges in the graph being searched. While efficient
implementations exist that exploit GPUs or multi-threads,we
propose a method for reducing the number of vertices and
edges in the graph in order to sequentially search the decision
graph faster.

As discussed earlier, between two decision points the
robot has to follow the sequential links. Therefore, we can
connect the two decision points using new edges that encode
the cost of the underlying sequential links, and remove the
sequential links. The cost of travelling the same vertices
whether encoded by the actual number of links or just a
single link is therefore the same. We call this graph consisting
of only decisions points as “Decision Graph”. An example
can be seen in Fig.1(d-f). In (d) the reduction can be
seen very clearly because most of the map consists of long
corridors without any loop closures. All such corridors are
reduced to single edges which connect decision points that
are present at the end of the corridors. (The corners of the
corridors becomes decision points because the robot turns
slowly, generating a lot of poses at the same place which
are then linked together by the neighbourhood search (c.f.
SectionIV-B)). Another example is in fig.1-(f) where the
arrow points to two trajectories that are reduced to single
edges.

In order to have an insight into how the decision graph
is constructed, let us consider a sequence of vertices
Di[O1 . . . On]Di+1, where there aren sequential links be-
tween the two decision points. Let the cost of travelling from
Di to O1 be ci,1 and that of travelling fromOn to Di+1 be
cn,i+1. We can calculate the costc1,n as

c1,n =
n
∑

i=1

f(Oi) (7)

wheref(·) is the metric under consideration. This gives
us the accumulated cost of travelling the sequential links.

The cost of travelling fromDi to Di+1 is then calculated as
ci,i+1 = c1,n+cn,i+1 (sinceci,1 = f(O1)). We can therefore
add a new edge with this weight between the decision points
and effectively eliminaten vertices and the corresponding
edges.

We do this for all the decision points in the graph and as
a result we get the decision graph, which contains only the
decision points and the associated costs of travelling between
them. We argue that the two representation are equivalent and
there is no loss of information when constructing the decision
graph from the original graph, therefore they are provably
equivalent when used as input for path planning over belief
space.

E. Searching over the decision graph

Given a start and a goal vertex, we can search over the
decision graph to find the minimum uncertainty path. For
the search, we use the classic Dijsktra algorithm. When the
decision graph is constructed, we keep the start and the goal
vertices as decision points as well.

The overall algorithm is presented in algorithm1 and the
method used for constructing the decision graph is given in
algorithm2. Since the search is carried out over the decision
graph, the resulting path only contains the decision points
(Algorithm 1, Line 4). For actually carrying out the motion,
the robot needs to know which vertices to follow in order to
travel between decision points. Therefore, we reconstructthe
path in the original graph by adding the segments between
decision point that the robot must traverse to reach one
decision point from anotheri.e. line 5 of algorithm1. This
can be done efficiently by maintaining a lookup table for
each pair of decision points that have a common edge in the
decision graph.

V. EXPERIMENTS

In this section we present the methodology and the results
for a set of experiments carried out in order to validate and
evaluate our minimum uncertainty path planning approach.
We use for the experimentation, simulated and real data,
from indoor and outdoor environments. Specifically for the
real data, we use the Bicocca [29], New college [30], and
Intel datasets and for the simulated counterpart, we use the
Manhattan dataset. The Manhattan and Intel datasets are
available with the downloaded version of g2o [31].

To obtain the graph based map needed by our approach,
the FaMUS algorithm, we use the g2o graph optimizer [31]
with the Gauss-Newton method and one iteration. We use
g2o to efficiently calculate the marginal covariances needed
to calculate theD-opt criterion. Fig.1 shows the optimized
map for the Bicocca, Intel and New college dataset used in
the experiments.

In the remainder of this section, we show the result of
the proposed algorithm using the above simulated and real
datasets. Specifically, we will show:
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Fig. 1. (a)-(c) Graph map with full vertices (red) and edges (blue). (d)-(f) Graph map with reduced vertices (red) and edges(light grey). Figure best
viewed in color.

• the ratio of reduction in the number of vertices and edges
in the graph for each dataset due to the computation of
the decision graph

• a MonteCarlo simulation that validates the resultant
minimum uncertainty path of the FaMUS algorithm.

• a comparison between the accumulated uncertainty in
the resulting path of the FaMUS algorithm and the
shortest path algorithm.

• timing comparisons with previous approaches.

Finally, we also investigate experimentally how many times
the minimum uncertainty path is different form the shortest
path and on average, what is the overlap between them.

A. Graph reduction

A key aspect of our algorithm is the reduction of the ver-
tices and edges in the graph to a provable equal representation
used in order to increase the speed of searching the minimum
uncertainty path.

For the used datasets, tableII presents the percentual
reduction in the number of vertices and edges in the input
graph based map needed by the FaMUS algorithm.

The reduction achieved allows us to reduce the effective
complexity of our algorithm in running time and hence it
permits a small execution time, as is shown in sectionV-C.

TABLE II
PERCENTAGE REDUCTION OF VERTICES AND EDGES BY THEFAMUS

ALGORITHM

Dataset Vertices Edges Vertices Edges

(name) (Full/Redu.) (Full/Redu.) Reduction Reduction

Bicocca 8358/980 8513/6936 88.27% 18.52%

Intel 943/623 1837/1527 33.93% 16.87%

Manhattan 3500/2469 5598/4863 29.45% 13.12%

New College 12816/1055 13171/2624 91.76% 80.07%

B. H0: Are the minimum uncertainty path and the shortest
necessarily equal

One of the main reasons to plan in the belief space is that
the shortest path may be unsafe regarding the uncertainty, in
the task of planning from point A to point B. Here we put
to test this hypothesis by comparing the final accumulated
uncertainty at the end point after following the shortest path
and the minimum uncertainty path generated by the FaMUS
algorithm.

We ran the above experiment 1000 times in each dataset,
therefore obtaining 4000 trials in total. We select randomly
each time the start and goal points with a separation of X
meters in the euclidean sense. To make the results of the
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Fig/Intel_opt_2D_full_nodes_plot_1.eps
Fig/NewCollege_opt_2D_full_nodes_plot_1.eps
Fig/Bicocca_opt_2D_reduced_nodes_plot.eps
Fig/Intel_opt_2D_reduced_nodes_plot.eps
Fig/NewCollege_opt_2D_reduced_nodes_plot.eps
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Fig. 2. (a)-(c) Uncertantinty ratio of the accumulated uncertainty for 1000 trials. In each trial the start and goal node are selected at random. The
accumulated uncertainty is measured at the goal vertex of the shortest path and the path generated by the FaMUS algorithm. A ratio greater that one means
lower accumulated uncertainty in the path generated by the FaMUS algorithm.

−40 −20 0 20 40 60 80 100

−40

−20

0

20

40

60

x(m)

y(
m

)

Bicocca

(a)

−5 0 5 10 15 20 25

−5

0

5

10

15

x(m)

y(
m

)

Intel

(b)

−50 0 50 100 150 200

−200

−150

−100

−50

0

x(m)
y(

m
)

New College

(c)

0 200 400 600 800 1000
0

50

100

150

200

250

# Poses

U
nc

er
ta

in
ty

 

 

Shortest path
MInimum uncertainty path

(d)

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

# Poses

U
nc

er
ta

in
ty

 

 

Shortest path
MInimum uncertainty path

(e)

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

# Poses

U
nc

er
ta

in
ty

 

 

Shortest path
MInimum uncertainty path

(f)

Fig. 3. (a)-(c) Shortest path (red) and minimum uncertainty path (blue) generated by the FaMUS algorithm.(d)-(f) The corresponding accumulated
uncertainty for the above paths. Figure best viewed in color.

experiment visually interpretable and to avoid misleading
statistics, we show (Fig.2) the ratio between the uncertainties
of the paths generated by the FaMUS algorithm and the
shortest path. Also in tableIII we count how many times
the path are the same, completely different and how many
nodes are overlapped on average in each dataset.

Fig. 3 shows the resulting paths for some cases in the
above experiment. It is worth mentioning here that the Fa-
MUS algorithm follows the classical active SLAM behaviour
demonstrated in the literature [32] i.e. it prefers paths that

have loop-closings in order to exploit previously visited
places to keep the uncertainty low, even though they may
result in longer path lengths.

Finally, it is worth mentioning that as expected, all the
values in Fig.2 are above one (i.e. we are actually obtaining
the minimum uncertainty path).

C. Timing comparisons

Table IV summarizes the average computation time of
1000 experiments for each dataset. The experiment carried

Fig/Bicocca_opt_uncertainty_ratio_1000.eps
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Fig/New_College_opt_two_path_comparison_paths.eps
Fig/Bicocca_opt_two_path_comparison_curve.eps
Fig/Intel_opt_two_path_comparison_curve.eps
Fig/New_College_opt_two_path_comparison_curve.eps


TABLE III
PATHS GENERATED BY THEFAMUS ALGORITHM VS THE SHORTEST

PATH

Dataset = paths != paths % overlap

Bicocca 261 51 87.35%

Intel 170 74 62.59%

Manhattan 146 37 70.22%

New College 215 21 87.79%

out is described in sectionV-B. The FaMUS algorithm
outperforms the state of the art [9] in this regard.e.g. for
a graph with 13171 vertices and 12816 edges we calculate
the minimum uncertainty path it in 2.14 seconds on average,
for approximately 700 vertices [9] does it in 5 seconds.i.e.
for 94.68% more vertices the FaMUS algorithm does it in
57.13% less time.

The timing given here were obtained using a research
implementation of the FaMUS algorithm in C++ on a 2.8
GHz core 2 Duo Intel processor with 8 GB of memory under
Ubuntu 10.04 LTS.

Finally, it should be pointed out that for future compar-
isons, public dataset and notad-hocexamples should be used
for timing comparison. This is because timing performance
evaluation of this type of algorithms depends on the topology
of the graph (edges and vertices), thus a fixed, open and
reproducible testbed is desirable.

VI. D ISCUSSION

In this paper, we have proposed a fast path planning
algorithm capable of obtaining the minimum uncertainty path
according to a reduced representation of the environment
using a determinant-based criterion. In the literature, tothe
best knowledge of the authors of this article, this is the
first use of the determinant-based criterion to quantify the
uncertainty of the robot and environment in a path planning
under uncertainty context, therefore accurately capturing the
complete dimension of the uncertainty according to the
TOED [16] [17].

Since the complexity of search algorithms is dependant on
the number of vertices and edges in the graph, a significant
speed up can be achieved by reducing the size of the graph. In
this work, we have proposed a novel representation termed
“decision graph” which enables searching over only those
vertices in the graph where the robot can make a decision
between at least two paths. This representation is provably
equivalent to searching over the whole graph in the sense
that both produce the same minimum uncertainty paths. This
means that although the decision graph has fewer vertices and
edges than the original graph, there is no loss of information
when constructing the reduced representation.

The FaMUS algorithm proposed here generates the mini-
mum uncertainty path given a pose graph of the environment.
If the environment is static, as is assumed, the robot will be
able to reach the goal and have the minimum uncertainty at
the goal node. But this is a very strong assumption because

TABLE IV
TIMING PERFORMANCE OF THEFAMUS ALGORITHM

Dataset # Vertices # Edges Time (ms)

Bicocca 8358 8513 1397.2

Intel 943 1837 215.180

Manhattan 3500 5598 839.97

New College 12816 13171 2143.2

real world environments are highly dynamic. As the robot
moves through the planned path, it gathers new information
that may alter the belief of the robot and may lead to a new
path with lower uncertainty. Therefore, the robot should be
able to carry out fast replanning in order to deal with the
dynamic nature of the world. Our method, while generating
the minimum uncertainty path under theD-opt criterion, is
fast enough to replan in real time.

The proposed algorithm produces, via an exhaustive
search, the minimum uncertainty path from an initial con-
figuration of the robot until the goal configuration. We
use an exhaustive search because the minimum uncertainty
path in the belief space cannot be guaranteed in a greedy
search procedure due to the non-monotonic evolution of the
uncertainty. Moreover, the non-monotonic evolution prevents
the direct use of well known non-uniform path planning
algorithm such as A* or D*. The proposal of optimistic
heuristics of the uncertainty should be the focus of future
work in the path planning under uncertainty research if we
desire to use the incremental, computationally tractable yet
complete path planning solutions of [27], [28] and [33],
among others.

Comparing our algorithm with respect to the state of the
art, i.e. Valencia et al. [9], our algorithm proposal differs
from their work in two distinctive regards, namely the size
of the processed graph and the generality of the input graph
map representation. Concerning the first one, we devise a
decision graph which is equivalent in terms of response to
the full input graph but less costly, computationally speaking,
to evaluate. The work of Valencia et al. [9] does not perform
this or any related step. Comparing the rest of the algorithm
i.e. the graph search procedure, our work and theirs rely on
the same algorithm techniques (e.g.Dijsktra).

Apropos the second difference, our approach is more
general with regards to the range of SLAM algorithms it can
operate on, the only restriction being that we have access
to the covariance at each node (as well as landmark if the
algorithm maintains it). We do not limit the graph input to
a particular class such as the produces by PoseSLAM as
Valencia et al. [9]. In this regard, we also see as strength
the ability of our algorithm to use closed form equations to
compute the uncertainty from the covariance matrix without
imposing any distribution to the errors, in contrast to Valencia
et al. that use a Gaussian distribution.

To conclude, we have presented a path planning algorithm
in the belief space that generates the minimum uncertainty
path according to theD-opt criterion by speeding up the



search using a reduced graph representation of the environ-
ment termed “decision graph” which exploits the sparsity
inherent in the pose graph SLAM formulation. As future
work, we are aiming at developing an active selection pro-
cedure of the nodes of the reduced graph in order to further
reduce the uncertainty in the navigation. Also, we aim at
performing field test, in heterogeneous environment, of the
proposed algorithm.
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