

RVSS 2018: Semantic SLAM Making robots map and understand the world

Viorela IIa, Yasir Latif, Trung Pham, Vincent Lui

Starts from known position but unknown environment

SLAM is the problem of estimating the robot position and map the environment given the sensor data and control inputs.

Observes landmarks in the environment

Move in the environment.

Observes landmarks in the environment

Move again.

Re-observe landmarks in the environment – Data association

Re-observe landmarks in the environment – Reduces the error

Challenges of Robot SLAM

- Most mobile robots work in an unstructured, uncertain environment.
- Absolute position information (e.g. via GPS or other global localization systems such as VICON) is often unavailable, inaccurate, or insufficient
- Uncertainties are present in sensors readings, motion as well as in the model.
 - Sensor noise
 - Sensor aliasing
 - Effecter/Actuator noise
 - Position integration
 - Simple models

Probability and Gaussian

Example of un uncertain **Galton Board** physical process.

Gaussian

Univariate

$$p(x) \sim N(\mu, \sigma^2)$$
:

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$

Multivariate

$$p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})}$$

Discrete vs. Continuous

Discrete case

$$\sum_{x} P(x) = 1$$

Continuous case

$$\int p(x) \, dx = 1$$

Probabilities - Terminology

- Uncertainty → random variable → probability p(x)
- Probability density function pdf p(x)

- Joint probability p(x,y)
- Conditional probability or posterior p(x|y)
- Marginal probability or prior p(x)

Localization

1D world represented with cells

belief

\mathbf{x}_1	\mathbf{X}_{2}	X ₃	$\mathbf{x_4}$	X ₅
----------------	------------------	-----------------------	----------------	-----------------------

What is the probability of the robot being in a cell?

$$p(x') = 0.2$$

Measurement

The robot sees the red color

How this affect the probability distribution (belief)?

Multiply each cell with the probability of being red or white

Measurement

$$\sum_{i} p(z \mid x_{i}) p(x_{i}) = 0.36$$

To have a valid probability we need to normalize:

1/9	1/3	1/3	1/9	1/9
		1,0		

Posterior distribution

Noisy Motion

The robot is moving 2 cells to the right. The world is cyclic.

$$u = 2$$

0.05	0	0.05	0.45	0.45

17

Sensing and Motion

Sensing → Bayes rule → Posterior

$$p(x_i \mid z) = \eta p(z \mid x_i) p(x_i)$$

Motion → Total probability → Prior

$$p(x_i^t) = \sum_j p(x_j^{t-1}) p(x_i \mid x_j)$$

Markov Localization

- Named after Russian mathematician Andrey Markov
- Applies to any type of distribution

Prediction

$$\overline{bel}(x_t) = \int_x p(x_t \mid u_t; x_{t-1}) bel(x_{t-1}) dx_{t-1} \qquad \text{continuous}$$

$$\overline{bel}(x_t) = \sum_x p(x_t \mid u_t; x_{t-1}) bel(x_{t-1}) \qquad \text{discrete}$$

Update – calculates the posterior

$$bel(x_t) = \eta p(z \mid x_t) \overline{bel}(x_{t-1})$$

Mapping – Grid Mapping

Workshop Material

Occupancy grid representation

Fixed cell decomposition – Example with very small cells

Occupancy grid representation

- The map is explicitly given.
- Objects are visible. Object avoidance can be applied.
- Path planning can be easily applied.
 - Small cells: extract straight lines, define polygons, find the configuration space, plan a path.
 - Large cells: Apply search algorithms directly in the cell space
- Restricted to small, structured environments

Topological Map Representation

Topological Map Representation

- The map is not explicitly given.
- Separate object detection and avoidance need to be performed in order to safely navigate.
- Path planning is done by search algorithms in a graph.
- Can be used in large, unstructured environments.
- The map can be obtained by drawing the exterioceptive sensor readings (laser scans, 2D/3D points, objects) for each vertex.

Laser scans-based maps

2D Landmark-based Maps

3D Points from 2D Image Processing

Dense-Semantic SLAM

Grid Maps

Occupancy grid maps address the problem of generating consistent maps from noisy and uncertain measurement data, under the assumption that the robot pose is known.

Unoccupied

Occupied

Each random variable is binary and corresponds to the occupancy of the location is covers

Represent the map as a field of random variables, arranged in an evenly spaced grid.

Grid Maps – Representation

$$\{m_1, m_2, \dots, m_n\}$$
 • Random variables

m ₁	m ₂	•••	
			m _n

Unoccupied
$$p(m_j)=0$$

Unoccupied
$$p(m_j) = 0$$
Occupied $p(m_i) = 1$

Unknown
$$p(m_j) = 0.5$$

Grid Maps – Assumptions

Assumes the environment is static

Unoccupied

Occupied

Always

Always

Grid Maps – Assumptions

Assumes known robot position and orientation

Unoccupied

Occupied

$$x_t = [x, y, \theta]^{\top}$$

Grid Maps – Assumptions

 Independent cells: If I know part of the environment does not help in estimating the rest

		?
	?	
	?	

Occupied
$$p(m_i) = 1$$

Grid Maps - Representation

$$\mathbf{m} = \{m_1, m_2, \dots, m_n\}$$
 • Independent random variables

$$p(\mathbf{m}) = \prod_{i=1}^{n} p(m_i)$$

The problem can be broken-down into a collection of separate problem.

Grid Maps – Representation

$$\mathbf{m} = \{m_1, m_2, \dots, m_n\}$$
 • Independent random variables

 $\mathbf{Z}_{1:t}$

All measurements

 $\mathbf{X}_{1:t}$

Robot poses

Mapping assumes known robot position

$$p(\mathbf{m}|\mathbf{z}_{1:t}, \mathbf{x}_{1:t}) = \prod_{i=1}^{n} p(m_i|\mathbf{z}_{1:t}, \mathbf{x}_{1:t})$$

Grid Maps – Bayes Filter

Apply Bayes filter for mapping

 $\mathbf{Z}_{1:t}$

All measurements

 $\mathbf{X}_{1:t}$

Robot poses

We don't have actions → no Prediction step

$$p(\mathbf{m}|\mathbf{z}_{1:t}, \mathbf{x}_{1:t}) = \prod_{i=1}^{n} p(m_i|\mathbf{z}_{1:t}, \mathbf{x}_{1:t})$$

 Apply Bayes rule to calculate the probability of each cell given the current measurements and the poses of the robot.

$$p(m_i|\mathbf{z}_{1:t}, \mathbf{x}_{1:t}) = \frac{p(z_t|m_i, \mathbf{z}_{1:t-1}, \mathbf{x}_{1:t}) p(m_i|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})}{p(z_t|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})}$$

 Apply Bayes rule to calculate the probability of each cell given the current measurements and the poses of the robot.

Measurement probability

Current belief

$$p(m_i|\mathbf{z}_{1:t}, \mathbf{x}_{1:t}) = \frac{p(z_t|m_i, \mathbf{z}_{1:t-1}, \mathbf{x}_{1:t}) p(m_i|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})}{p(z_t|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})}$$

Evidence

Let's integrate all the assumptions in our Posterior calculation:

$$p(m_i|\mathbf{z}_{1:t}, \mathbf{x}_{1:t}) = \frac{p(z_t|m_i, \mathbf{z}_{1:t-1}, \mathbf{x}_{1:t}) \ p(m_i|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})}{p(z_t|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})}$$

$$p(m_i|\mathbf{z}_{1:t}, \mathbf{x}_{1:t}) = \frac{p(z_t|m_i, \mathbf{x}_t) \ p(m_i|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1})}{p(z_t|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})}$$

Given the map, the current measurement does not depend on previous poses and measurements.

$$p(m_i|\mathbf{z}_{1:t}, \mathbf{x}_{1:t}) = \underbrace{\frac{p(z_t|m_i, \mathbf{x}_t)p(m_i|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1})}{p(z_t|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})}}_{p(z_t|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})}$$

Bayes rule again $p(z_t|m_i,\mathbf{x}_t) = rac{p(m_i|z_t,\mathbf{x}_t) \ p(z_t|\mathbf{x}_t)}{p(m_i|\mathbf{x}_t)}$

$$p(m_i|\mathbf{z}_{1:t}, \mathbf{x}_{1:t}) = \frac{p(m_i|z_t, \mathbf{x}_t) p(z_t|\mathbf{x}_t) p(m_i|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1})}{p(m_i|\mathbf{x}_t) p(z_t|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})}$$

Let's integrate all the assumptions in our Posterior calculation:

$$p(m_i|\mathbf{z}_{1:t}, \mathbf{x}_{1:t}) = \frac{p(m_i|z_t, \mathbf{x}_t) \ p(z_t|\mathbf{x}_t) \ p(m_i|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1})}{p(m_i) \ p(z_t|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})}$$

We have binary states:

$$p(\neg m_i | \mathbf{z}_{1:t}, \mathbf{x}_{1:t}) = \frac{p(\neg m_i | z_t, \mathbf{x}_t) \ p(z_t | \mathbf{x}_t) \ p(\neg m_i | \mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1})}{p(\neg m_i) \ p(z_t | \mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})}$$

$$\frac{p(m_i|\mathbf{z}_{1:t},\mathbf{x}_{1:t})}{p(\neg m_i|\mathbf{z}_{1:t},\mathbf{x}_{1:t})} = \frac{p(m_i|\mathbf{z}_{1:t},\mathbf{x}_{1:t})}{1 - p(m_i|\mathbf{z}_{1:t},\mathbf{x}_{1:t})}$$

Let's integrate all the assumptions in our Posterior calculation:

$$p(m_i|\mathbf{z}_{1:t}, \mathbf{x}_{1:t}) = \frac{p(m_i|z_t, \mathbf{x}_t) p(z_t|\mathbf{x}_t) p(m_i|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1})}{p(m_i) p(z_t|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})}$$

We have binary states:

$$p(\neg m_i | \mathbf{z}_{1:t}, \mathbf{x}_{1:t}) = \frac{p(\neg m_i | z_t, \mathbf{x}_t) \ p(z_t | \mathbf{x}_t) \ p(\neg m_i | \mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1})}{p(\neg m_i) \ p(z_t | \mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})}$$

$$\frac{p(m_i|\mathbf{z}_{1:t},\mathbf{x}_{1:t})}{p(\neg m_i|\mathbf{z}_{1:t},\mathbf{x}_{1:t})} = \frac{p(m_i|\mathbf{z}_{1:t},\mathbf{x}_{1:t})}{1 - p(m_i|\mathbf{z}_{1:t},\mathbf{x}_{1:t})}$$

Grid Maps – Update

$$\frac{p(m_i|\mathbf{z}_{1:t}, \mathbf{x}_{1:t})}{p(\neg m_i|\mathbf{z}_{1:t}, \mathbf{x}_{1:t})} = \frac{p(m_i|z_t, \mathbf{x}_t)}{p(\neg m_i|z_t, \mathbf{x}_t)} \frac{p(m_i|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1})}{p(\neg m_i|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1})} \frac{p(\neg m_i)}{p(m_i)}$$

$$\frac{p(m_i|\mathbf{z}_{1:t},\mathbf{x}_{1:t})}{p(\neg m_i|\mathbf{z}_{1:t},\mathbf{x}_{1:t})} = \frac{p(m_i|z_t,\mathbf{x}_t)}{1 - p(m_i|z_t,\mathbf{x}_t)} \frac{p(m_i|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})}{1 - p(m_i|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})} \frac{1 - p(m_i)}{p(m_i)}$$

Current observation

Recursive term

Prior

Odds and Log Odds

Odds

$$\frac{p(x)}{p(\neg x)} = \frac{p(x)}{1 - p(x)}$$

$$\frac{p(x)}{1 - p(x)} = y(x)$$

$$p(x) = y(x) - y(x)p(x)$$

$$p(x) = \frac{y(x)}{1 + y(x)} = \frac{1}{1 + \frac{1}{y(x)}}$$

Take the log()

$$p(x) = (1 + y(x)^{-1})^{-1}$$

Odds and Log Odds

Odds

$$\frac{p(x)}{p(\neg x)} = \frac{p(x)}{1 - p(x)}$$

Log Odds

$$l(x) = \log \frac{p(x)}{1 - p(x)}$$

$$p(x) = 1 - \frac{1}{1 + \exp(l(x))}$$

Grid Maps – Odds and Log Odds

Odds

$$\frac{p(m_i|\mathbf{z}_{1:t}, \mathbf{x}_{1:t})}{p(\neg m_i|\mathbf{z}_{1:t}, \mathbf{x}_{1:t})} = \frac{p(m_i|z_t, \mathbf{x}_t)}{1 - p(m_i|z_t, \mathbf{x}_t)} \frac{p(m_i|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1})}{1 - p(m_i|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1})} \frac{1 - p(m_i)}{p(m_i)}$$

Current observation

Recursive term

Prior

Log Odds

$$l(m_i|\mathbf{z}_{1:t}, \mathbf{x}_{1:t}) = l(m_i|z_t, \mathbf{x}_t) + l(m_i|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1}) - l(m_i)$$

Inverse Sensor Model

Inverse Sensor Model

Inverse Sensor Model

Grid Maps – Algorithm

```
Algorithm occupancy_grid_mapping(\{l_{t-1,i}\}, x_t, z_t):
                for all cells \mathbf{m}_i do
3:
                     if \mathbf{m}_i in perceptual field of z_t then
                          l_{t,i} = l_{t-1,i} + \mathbf{inverse\_sensor\_model}(\mathbf{m}_i, x_t, z_t) - l_0
4:
5:
                     else
6:
                          l_{t,i} = l_{t-1,i}
7:
                     endif
8:
                endfor
                return \{l_{t,i}\}
9:
```

Courtesy of S. Thrun

Maximum Likelihood Estimation The SLAM Example

SLAM – variables and measurements

Noisy Models

Motion model:
$$x_t = f_i(x_{t-1}, u_t) + v_t$$

$$P(x_t \mid x_{t-1}, u_t) \propto \exp\left(-\frac{1}{2} \parallel f_i(x_{t-1}, u_t) - x_t \parallel_{\Sigma_{x_t}}^2\right)$$

Observation model:
$$z_t^j = h_k(x_t, l_j) + v_n$$

$$P(z_t^j \mid x_t, l_j) \propto \exp\left(-\frac{1}{2} \parallel h(\mu_{x_t}, \mu_{l_j}) - z_t^j \parallel_{\Sigma_{z_j^j}}^2\right)$$

Graphical Models for SLAM

Markov Networks

Bayesian belief network

Factor graphs

Maximum Likelihood Estimation

Maximum A Posteriori estimate (MAP)

$$P(X,L) = P(\mathbf{x}_0) \prod_{i=1}^{n} P(x_i \mid x_{i-1}, u_i) \prod_{k=1}^{m} P(z_k \mid x_{i_k}, l_{j_k})$$

The configuration that maximizes the joint probability distribution

Maximum Likelihood Estimation

$$P(X,L) = \phi(\mathbf{x}_0) \prod_{i=1}^{n} \psi(x_{i-1}, u_i) \prod_{k=1}^{m} \phi(x_{i_k}, l_{j_k})$$

Factor graph expression of the joint probability distribution

Maximum Likelihood Estimation

$$P(X, L) = P(\mathbf{x}_0) \prod_{i}^{n} P(x_i \mid x_{i-1}, u_i) \prod_{k}^{m} P(z_k \mid x_{i_k}, l_{j_k})$$

Replace the multivariate normal distributions

$$\max\{P(X,L)\} = \max\left\{\prod_{k}^{m} \exp\left(-\frac{1}{2} \|h(x_{i_{k}}, l_{j_{k}}) - z_{k}\|_{\Sigma_{z}}^{2}\right)\right\}$$
$$\prod_{i}^{m} \exp\left(-\frac{1}{2} \|f(x_{i-1}, u_{i}) - x_{i}\|_{\Sigma_{u}}^{2}\right)\right\}$$

NIGHTMARE!!!

- log(x)

$$\operatorname{argmax} \left\{ -\log \left(\prod_{k}^{m} \exp(r_{k}) \right) \right\} = \operatorname{argmin} \left\{ \sum_{k}^{m} r_{k} \right\}$$

Makes everything easier!

$$\{L^*, X^*\} = \min \left\{ \frac{1}{2} \sum_{k=1}^{m} \|h(x_{i_k}, l_{j_k}) - z_k\|_{\Sigma_z}^2 + \sum_{i=1}^{n} \frac{1}{2} \|f(x_{i-1}, u_i) - x_i\|_{\Sigma_u}^2 \right\}$$
errors

Nonlinear Least Squares Problem

Nonlinear Least Squares

A standard nonlinear least squares

$$\boldsymbol{\theta} = \{L, X\}$$

stationary point
$$oldsymbol{ heta}^* = \min \left\{ F(oldsymbol{ heta})
ight\}$$

$$F(\boldsymbol{\theta}) = \frac{1}{2} \sum_{k=1}^{m} \|\mathbf{r}_k(\boldsymbol{\theta})\|^2$$

Newton Method

Newton methods can be used to find the root of a function.

- Start with an initial estimate: θ^0
- Calculate the tangent in this point:

$$t(\theta) = f'(\theta^k)(\theta - \theta^k) + f(\theta^k)$$

• Find the intercept:

$$t(\theta^{k+1}) = 0$$

• Iterate:

$$\theta^{k+1} = \theta^k - \frac{f(\theta^k)}{f'(\theta^k)}$$

Newton Method in Optimization

For minimizing a nonlinear function, one applies Newton method to the first derivative.

$$f'(\theta^*) = 0$$
 stationary point

$$f'(\theta^k) \propto f'(\theta^k) + f''(\theta^k) \Delta \theta = 0$$

$$\Delta \theta = \theta - \theta^k$$

$$\theta^{k+1} = \theta^k - \underbrace{f'(\theta^k)}_{f''(\theta^k)}$$

Needs the second derivative

Nonlinear Least Squares

$$F(\boldsymbol{\theta}) = \frac{1}{2} \sum_{k=1}^{m} \|\mathbf{r}_k(\boldsymbol{\theta})\|^2 \quad \boldsymbol{\theta}^* = \min\{F(\boldsymbol{\theta})\}$$

Nonlinear residuals:

$$\mathbf{r}(\boldsymbol{\theta}) = [r_1, \dots, r_m]^{\top}$$

Linearize:

$$\tilde{\mathbf{r}}(\boldsymbol{\theta}) = \mathbf{r}(\boldsymbol{\theta}^0) + J(\boldsymbol{\theta}^0)(\boldsymbol{\theta} - \boldsymbol{\theta}^0)$$

correction δ

Linear Least Squares:

$$\frac{1}{2} \sum_{k=0}^{m} \left\| r_{0_k} + J_k \delta_k \right\|^2 = \frac{1}{2} \left\| \mathbf{r_0} \right\|^2 + \boldsymbol{\delta}^\top J^\top \mathbf{r_0} + \frac{1}{2} \boldsymbol{\delta}^\top J^\top J \boldsymbol{\delta}$$

Linear Least Squares

We need to find the minimum of:

$$L(\boldsymbol{\delta}) = \frac{1}{2} \|\mathbf{r_0}\|^2 + \boldsymbol{\delta}^{\top} J^{\top} \mathbf{r_0} + \frac{1}{2} \boldsymbol{\delta}^{\top} J^{\top} J \boldsymbol{\delta}$$

Ist derivative:

$$L(\boldsymbol{\delta})' = J^{\mathsf{T}} \mathbf{r_0} + J^{\mathsf{T}} J \boldsymbol{\delta}$$

The minimum is where the Ist derivative cancels

$$J^{\mathsf{T}} \mathbf{r_0} + J^{\mathsf{T}} J \boldsymbol{\delta} = 0$$

Correction:

$$oldsymbol{\delta}^*$$

Jacobians and "Hessians"

Jacobian Hessian (approx.)
$$L(\boldsymbol{\delta})' = J^{\top}\mathbf{r_0} + J^{\top}J\boldsymbol{\delta}$$

$$J_{k} = \begin{bmatrix} \frac{\delta r_{k}}{\delta \theta_{1}} \\ \frac{\delta r_{k}}{\delta \theta_{2}} \\ \vdots \\ \frac{\delta r_{k}}{\delta \theta_{n}} \end{bmatrix} \quad H_{k} = \begin{bmatrix} \frac{\delta^{2} r_{k}}{\delta \theta_{1} \delta \theta_{1}} & \frac{\delta^{2} r_{k}}{\delta \theta_{1} \delta \theta_{2}} & \cdots & \frac{\delta^{2} r_{k}}{\delta \theta_{1} \delta \theta_{n}} \\ \frac{\delta^{2} r_{k}}{\delta \theta_{2} \delta \theta_{1}} & \frac{\delta^{2} r_{k}}{\delta \theta_{2} \delta \theta_{2}} & \cdots & \frac{\delta^{2} r_{k}}{\delta \theta_{2} \delta \theta_{n}} \\ \vdots & & & & \\ \frac{\delta^{2} r_{k}}{\delta \theta_{n} \delta \theta_{1}} & \frac{\delta^{2} r_{k}}{\delta \theta_{n} \delta \theta_{2}} & \cdots & \frac{\delta^{2} r_{k}}{\delta \theta_{n} \delta \theta_{n}} \end{bmatrix}$$

Jacobians and "Hessians"

Each measurement affects few variables (2 in general):

$$J_k = \begin{bmatrix} 0 \\ \vdots \\ \frac{\delta r_k}{\delta \theta_i} \\ 0 \\ \vdots \\ \frac{\delta r_k}{\delta \theta_n} \end{bmatrix}$$

$$H_k = \begin{bmatrix} 0 & \dots & 0 & \dots & 0 \\ 0 & \dots & \frac{\delta^2 r_k}{\delta \theta_i \delta \theta_i} & 0 \dots 0 & \frac{\delta^2 r_k}{\delta \theta_i \delta \theta_n} \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \frac{\delta^2 r_k}{\delta \theta_n \delta \theta_i} & 0 \dots 0 & \frac{\delta^2 r_k}{\delta \theta_n \delta \theta_n} \end{bmatrix}$$

Gauss-Newton

$$F(\boldsymbol{\theta}) = \frac{1}{2} \sum_{k=1}^{m} \|\mathbf{r}_k(\boldsymbol{\theta})\|^2$$

```
while 1
   linearize F(\theta) in \theta^i \rightarrow L(\delta)
   solve L(\delta)' = 0 obtain \delta^*
   if norm(\delta^*) < threshold
     done
   update \theta^{i+1} = \theta^i + \delta^*
```


SLAM - Solve

$$L(\boldsymbol{\delta}) = \|\mathbf{b}\|^2 + \boldsymbol{\delta}^{\top} A^{\top} \mathbf{b} + \frac{1}{2} \boldsymbol{\delta}^{\top} A^{\top} A \boldsymbol{\delta}$$

The min is where the first derivative cancels!

$$L(\boldsymbol{\delta})' = A^{\mathsf{T}}\mathbf{b} + A^{\mathsf{T}}A\boldsymbol{\delta} = 0$$

$$A^{\mathsf{T}}A\boldsymbol{\delta} = -A^{\mathsf{T}}\mathbf{b}$$

Normal Equation

$$A^{\mathsf{T}}A\boldsymbol{\delta} = -A^{\mathsf{T}}\mathbf{b}$$

Matrix Factorization

• Symmetric positive definite matrix A^TA has Cholesky factorization $A^TA = LL^T$ where L is lower triangular matrix with positive diagonal entries.

Matrix Factorization

• Linear system A^TA $\delta = A^Tb$ can then be solved by forward substitution in lower triangular system Ly = A^Tb , followed by back-substitution in upper triangular system L^T $\delta = y$

Sparse Matrices

A matrix is called **sparse** if many of its entries are zero

▶ A **block matrix** is a matrix which is interpreted as partitioned into sections called blocks that can be manipulated at once

Sparse Algebra

http://faculty.cse.tamu.edu/davis/suitesparse.html

SLAM++

high-performance nonlinear least squares solver for graph problems

Brought to you by: iviorela, swajnautcz

http://sourceforge.net/projects/slam-plus-plus/

Pose - SLAM

Structure From Motion

