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SLAM

Starts from known position but unknown environment
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SLAM is the problem of estimating

* the robot position and map the
environment given the sensor data
and control inputs.
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SLAM

Observes landmarks in the environment
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SLAM

Move in the environment.
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SLAM

Observes landmarks in the environment
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SLAM

Move again.
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SLAM

Re-observe landmarks in the environment — Data association
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SLAM

Re-observe landmarks in the environment — Reduces the error
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Challenges of Robot SLAM

 Most mobile robots work in an unstructured, uncertain environment.

» Absolute position information (e.g. via GPS or other global localization
systems such as VICON) is often unavailable, inaccurate, or insufficient

* Uncertainties are present in sensors readings, motion as well as in the
model.

— Sensor noise

— Sensor aliasing

— Effecter/Actuator noise
— Position integration

— Simple models
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Probability and Gaussian
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Gaussian

Univariate g
p(x) ~ N(u,0°):
w
1 1(x-p)’
p(x)= e? o
N2 o

Multivariate

p(x)~ N(pX):

1 Loy = (xop)
p(x) = (27[)“1/2‘2‘1/2 e’
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Discrete vs. Continuous

Discrete case Continuous case

D P(x)=1 [ p(x)dx =1

A Probability Density f(x)

Area = 1

i - X
0 Mean 1
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Probabilities - Terminology

Uncertainty 2 random variable = probability p(x)

Probability density function pdf p(x)

* Joint probability p(x,y)
e Conditional probability or posterior p(x|y)
* Marginal probability or prior p(x)
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| ocalization

1D world represented with cells

belief X, X, X3 X, X5

What is the probability of the robot being in a cell?

1/5 1/5 1/5 1/5 1/5

p(x)=0.2

14 © S.Thrun
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Measurement

The robot sees the red color

p(z=red)=0.6
X, X, X5

How this affect the probability distribution (belief) ?

0.04 | 0.12 | 0.12 | 0.04 | 0.04 % 1

Multiply each cell with the probability of being red or white

15 © S.Thrun
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Measurement

0.04 | 0.12 | 0.12 | 0.04 | 0.04

3 p(z1x)p(x;) =0.36

To have a valid probability we need to normalize:

1/9 1/3 1/3 1/9 1/9

Posterior distribution p(x | Z)

16 © S.Thrun
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The robot is moving 2 cells to the right. The world is cyclic.

Noisy Motion

p(x.,1x)=038
p(x,,1x)=0.1
p(x,;1x)=0.1

0 0.5 | 05 0 0
01 0.8 0.1
0.1%0+ | 0.1%0+ | 0.1%0.5+ | 0.1%0.5+ | 0.1%0+
0.8*0+ | 0.8%0+ |0.8%0+ |0.8%0.5+ |0.8%0.5+
0.1%0.5 [0.1%0  [0.1%0 | 0.1%0 [ 0.1%0.5
0.05 0 0.05 | 045 | 0.45

|
\9

© S.Thrun
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Sensing and Motion

Sensing = Bayesrule = Posterior

p(x;12)=np(zlx)p(x;)

Motion = Total probability =» Prior

p(x) =" p(xp(x; | x;)

18 © S.Thrun
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Markov Localization

« Named after Russian mathematician Andrey Markov
« Applies to any type of distribution

Prediction

bel(x,) = f p(x, lu;x,_ ) bel(x,_)dx,_, ~ ° continuous
bel(x,)= ¥ p(x, lu;x,.,) bel(x,.,) - diserete

Update — calculates the posterior

bel(x,)=np(z| x,) bel(x,_,)
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Mapping — Grid Mapping

Workshop Material
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Occupancy grid representation

Fixed cell decomposition — Example with very small cells

o Courtesy of S. Thrun
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Occupancy grid representation

The map is explicitly given.

Objects are visible. Object avoidance can be applied.

Path planning can be easily applied.

— Small cells: extract straight lines, define polygons, find the configuration
space, plan a path.

— Large cells: Apply search algorithms directly in the cell space

Restricted to small, structured environments
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Topological Map Representation

O
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Topological Map Representation

* The map is not explicitly given.

Separate object detection and avoidance need to be performed in
order to safely navigate.

Path planning is done by search algorithms in a graph.

Can be used in large, unstructured environments.

The map can be obtained by drawing the exterioceptive sensor
readings (laser scans, 2D/3D points, objects) for each vertex.
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Laser scans-based maps
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2D Landmark-based Maps
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3D Points from 2D Image Processing
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Dense-Semantic SLAM

ARC CENTRE OF EXCELLENCE FOR ROBOTIC VISION



Grid Maps

Occupancy grid maps address the problem of generating consistent maps from
noisy and uncertain measurement data, under the assumption that the robot pose

iIs known.

Unoccupied

Occupied

Each random variable is binary
and corresponds to the
occupancy of the location is
covers

Represent the map as a field of random variables, arranged in an evenly spaced
grid.
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Grid Maps — Representation

{ml, mao, ..., mn) - Random variables

m, m, Unoccupied p(mj) — ()

Occupied p(m;) =1

m, Unknown p(mj) = 0.0

ARC CENTRE OF EXCELLENCE FOR ROBOTIC VISION roboticvision.org



Grid Maps — Assumptions

 Assumes the environment is static

Unoccupied * Always

Occupied  Always
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Grid Maps — Assumptions

* Assumes known robot position and orientation

Unoccupied

Occupied

‘ﬂ Lt — [ajvyae]—r
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Grid Maps — Assumptions

* Independent cells : If | know part of the environment does not
help in estimating the rest

?

Occupied  p(m;) =1
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Grid Maps — Representation

Imn — {ml, mao, ... ,mn) * Independent random variables

The problem can be broken-down into a collection of separate problem.
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Grid Maps — Representation

m = {frnl7 mao, ... 7mn) * Independent random variables

Z1-¢ * All measurements

X1:t  Robot poses

Mapping assumes known robot position

n

P(m|Z1:t, X1:t) — Hp(mi|z1:t, Xl:t)
i=1
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Grid Maps — Bayes Filter

* Apply Bayes filter for mapping

Z1-¢ * All measurements

X1-t * Robot poses

We don’t have actions =2 no Prediction step

n

P(m|Z1:t, X1:t) — Hp(mi|z1:t, Xl:t)
i=1
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Grid Maps — Bayes Filter — Update

» Apply Bayes rule to calculate the probability of each cell given the
current measurements and the poses of the robot.

p(Zt \mz', Z1:t—1, Xl:t) p(mz‘ ‘let—la Xl:t)
p(Zt ’Z1:t—17 Xl:t)

p(mi‘zlzta Xl:t) —
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Grid Maps — Bayes Filter — Update

» Apply Bayes rule to calculate the probability of each cell given the
current measurements and the poses of the robot.

Measurement probability Current belief

p(Zt \mz', Z1:t—1, Xl:t) p(mz‘ ‘let—la Xl:t)
p(Zt ’Z1:t—17 Xl:t)

p(mi‘zlzta Xl:t) —

Evidence

ARC CENTRE OF EXCELLENCE FOR ROBOTIC VISION roboticvision.org



Grid Maps — Bayes Filter — Update
Let’s integrate all the assumptions in our Posterior calculation:

p(zt|mi, z1:4-1, >§1zt) p(m;|z1.e—1, Xln;)
p(Zt‘ 1:t—1> Xl:t)

p(mz ‘leta Xl:t) —

Markov assumption
p(Zt |mi7 Xt) p(mz’ |let—17 X1:t—1)
p(Zt |Z1:t—17 Xl:t)

p(mi|zlzt7 Xl:t) —

Given the map, the current measurement does not depend on previous poses
and measurements.
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Grid Maps — Bayes Filter — Update

p(Zt|mq;, Xt) p(mz‘\zu—l, X1:t—1)
p(Zt|Z1:t—17 Xl:t)

p(mi‘zlzta Xl:t) —

p(mz"fzt, Xt) p(zt‘Xt)
p(mz"Xt)

Bayes rule again p(zt’mia Xt) —

(mi’Zt, Xt) P(Zt\Xt) p(mi\zlzt—h Xl:t—l)
P(mi\Xt) p(zt\zu—h Xl:t)

p
p(mi‘zlzta Xl:t) —
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Grid Maps — Bayes Filter — Update

Let’s integrate all the assumptions in our Posterior calculation:

P(mi\zt, Xt) P(Zt\Xt) p(mi‘zlzt—la X1:t—1)
p(mz’) p(Zt\let—la Xl:t)

p(mi|zlzt7 Xl:t) —

We have binary states:

P(_'mi\zt, Xt) p(Zt|Xt) p(_'mi‘zlzt—la Xl:t—l)
p(_‘mi) p(Zt|Z1:t—1, Xl:t)

p(_'mi|zlzta Xl:t) —

p(mi‘zl:taxlzt) _ p(mi|zl:t7X1:t)
p(_'mi‘zl:taxlzt) 1 _p(mi|zl:t7X1:t)
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Grid Maps — Bayes Filter — Update

Let’s integrate all the assumptions in our Posterior calculation:

(mz‘ztvxt pwp m’&‘zlt 1y X1:t— 1)

p(mi|zlztaxlzt)
mz ]ﬁ) T—1,A&1:¢

We have binary states:

p(—m;|Z1:4,X1:t) = p(—mg|ze, X¢) plertXy) P(—Mi|Z1:0 -1, X1:0-1)
p(—~m;) plzdzrrTX1)

p(mi‘zl:taxlzt) _ p(mi‘zl:taxl:t)
p(_'mi‘zl:taxlzt) 1 _p(mi|Z1:t7X1:t)
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Grid Maps — Update

p(mi\ZLt,Xl:t) _ p(milzt,Xt) p(mi\ZLt—th:t—l) p(ﬁmi)
p(ﬁmi|21:t,X1:t) p(_'mi‘ztaxt)p(_'mi|zlzt—1axlzt—1) p(mz)

p(mi\zl:t,xu) _ p(mi|ztaxt) p(mi|21:t—1,X1:t—1) 1—]?(77%)
p(—m;|z1.,x1.¢) 1 —p(mylze, x¢) 1 —p(my|z1.4—1,X1.4-1)  p(my)

Current Recursive Prior
observation term
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Odds and Log Odds

Odds —




Odds and Log Odds

— p(z) _ p)

p(—~z) 1-p(z)

Log Odds [(z) = log
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Grid Maps — Odds and Log Odds

Odds

p(m;|z1:4,X1:4) . p(m|ze, X¢) p(mi|z1:i—1,X1:4—1) 1 —p(my)

p(—=m;|z1.e,x1.¢) 1 —p(milze, x¢) 1 — p(mg|zre—1,X16-1)  p(my;)

Current
observation

Log Odds

Recursive Prior

term

[(m|Z1.4, X1.4) = LMy |2e, X¢) + L(my

Z1:t—1,X1:t—1) — l(mz’)

Inverse
Sensor
Model
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Inverse Sensor Model

//
//
T~
T Sonar example
\\
8.% M\ p(m|z)
0.2 /
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Inverse Sensor Model

//
//
T~
T~ Laser example
\\
09 p(m|2)
0.5
0.1
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Grid Maps — Algorithm

1: Algorithm occupancy _grid mapping({l;—1;}, ¢, 2¢):

2: for all cells m; do

3: if m; in perceptual field of z; then

4. lt; = li—1,; + inverse_sensor_model(m;, T, z:) — lo
5: else

6: leo = li—1,

7. endif

8: endfor

9:

return {l; ; }

Courtesy of S. Thrun
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Maximum Likelihood Estimation
The SLAM Example
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SLAM — variables and measurements

{Xo X141, } State variables
{zy2,232, } Independent data
{u, } Control data
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Noisy Models

Motion model: re = fi(xe_1,us) + vy

1
Pz | m4—1,us) o< exp (-5 | fi(@e—1,us) — ||§3mt>

Observation model: Z] = hk (CCt, lj) -+ Unp,

. 1 ‘
P(Zg ’ th,lj) X exXp (—5 H h(,uxt):ulj) o Zg H%Z3>

t
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Graphical Models for SLAM

Bayesian belief network
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Maximum Likelihood Estimation

Maximum A Posteriori estimate (MAP)

n m
P(X,L) = P(xo) | [ P(xi | wicr,ws) || P(an | %3, 15,)
) k
11 12 1nl
Z3 Z, Zm-l,’Q
z, Zy ’ Zy
O OF---- ----- O
X0 U, X u, 4 X

The configuration that maximizes the joint probability distribution
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Maximum Likelihood Estimation

P(X,L) = ¢(xo) | [ v(@iz1,ui) | [ 62y, 15,)
) k
O
Pt - O
----- O

Factor graph expression of the joint probability distribution
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Maximum Likelihood Estimation

m

P(X,L) = P(xo) || P(wi | wiz1,us) | [ P(an | %4, 15,)
) k

Replace the multivariate normal distributions

max{P(X,L)} = max {HeXp (—% 1n(z3,,, L) — 2kl %)

k
n 1 )
HGXP (—5 [ f(zim1,u;) — %HQEU) '
() /
NIGHTMARE!!
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- log(x)
argmax {— log (H exp(rk)> } — argmin {Z 'L

k k y

N

Makes everything easier!
errors

I
* * 1 — ‘2
{L", X"} = {52 [h (@i, ! Jk ZkHZz"I_
k=1
Zl @iz, us) — o5
— 2 'Eu
= Y

errors

Nonlinear Least Squares Problem
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Nonlinear Least Squares

A standard nonlinear least squares

0= {L, X)

stationary point 9* — mm{ F(H) }
1 m
p— 5 Z |I‘k.
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Newton Method

Newton methods can be used to find the root of a function.

Start with an initial estimate: (90

Calculate the tangent in this point:

t(0) = f'(6%)(0 — 6%) + f(6")

Find the intercept:

t(9k+1) —0
Iterate:
f(6"%)
Hk—l_l _ 9]6 .
f'(6%)
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Newton Method in Optimization

For minimizing a nonlinear function, one applies Newton
method to the first derivative.

f/(e*) — O stationary point
f(OF) o f'(6%) + f"(8%) A0 = 0
A =0— 0"

9k+1 _ 6)]{ o f/ Hk)

Needs the second derivative
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Nonlinear Least Squares

1 « ) .
= 52]1% 0© = min{ F(0)}
Nonlinear residuals:  r(0) = [rq,... ,rm]T
Linearize: (0) =r(0°) + J(6°)(6 — 6"

!

Linear Least Squares: correction 0

1 < 2 1 2 | ST 4T Lo o7
5};|]rok+Jk5kH = 5 llrol*+8" T ro+ 6" S TS
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Linear Least Squares

We need to find the minimum of :

1 1
L) = Ilro|” + 8" T ro + 5(STJTJ(s
| st derivative: L((S)’ — JTI-O + JT Jo
The minimum is where JTI'O 4 J'J6 =0

the |5t derivative cancels

Correction: "
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Jacobians and “Hessians”

ARC CENTRE OF EXCELLENCE FOR ROBOTIC VISION

Jacobian

{_L\

Hessian (approx.)

S

L8) = Jro+J'Jb

527y, 57
06010604 0601005
52rk 52Tk
002001 002902
52rk 52Tk
00,0601 00,0602

52Tk
00100,

060200,

roboticvision.org



Jacobians and “Hessians”

Each measurement affects 0, /
few variables (2 in general):
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Gauss-Newton

— %z:: |rs (0

while 1
linearize F(B6) in 8 => L(d)
solve L(d)'=0 obfain o
if norm(0*) < threshold
done
update Bi+1 = 06" + d*
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SLAM - Solve

L@)::HbW+SDﬂb+%§ADM

The min is where the first derivative cancels!

L) = A'b+A"46 =0

A'A6 = —A'b
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Normal Equation

A'A6 = —A'b

roboticvision.org
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Matrix Factorization

L LT ATA

: . . : : : , , , : . . . : :
m - [ [ ) ) 0 D om m
(5] [5]5] oEm
=] [5]5] (=] = ]
(=] =[5 (S]]
Em Bl nEE
] (=[] EEE (] =
=] 5[5} (S]]
[=]=] 5[5} S]]
Em Em mEE
=] (=] DEE
=]} o= DEE
EE —_ EEm
DEEEEEEE DEEEEEEE = oEE =
EE EEE
=] (S5 DEE
5]} (5] OEE
5] [5]5] DEm
=] =]5] EEE
=] (S]] DEm
=] (=] 5) [ [
=]} (=] OEm
S]] [=]5] [S]=]5]
S]] [=]5] EEE
S]] (=] mEm
(ENENEEEENENNENENEENENEEEEEN- o rm ,l .8 oE
. , . . .

* Symmetric positive definite matrix A'A has Cholesky factorization ATA = LLT
where L is lower triangular matrix with positive diagonal entries.
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Matrix Factorization

|—
<
>
o

L

A
<

T 1 T T T T T T T T
= = ] g 2 o o o o [ o o [ [ | [ = ]
EE = | EE = =

EE = = EE = =
"2y - : 2, : i
(| = = (]| = =
HE = = EE [ =

HE = ] EE o ]

"2y - - " : i

(| = = = = ]

[ [ —_ = = = — |

[ o o [ ] —_— = [ | [ o = —_— =
i, : E : . -

- - .. - 4

[m[m] = = HE [ ]

mE = = EE = =

HE = = BHE = =

i, - : e : i

- 4 .. + -

([ = = HE = =

HE = = (5]} ] =

HE = | EE = ]

HE = = Bl = =

- [ [ (Y T T 6 = 1=k m = =k
1 1 1 1 1 | L1 L J L

* Linear system A'A 6 = A'b can then be solved by forward substitution in
lower triangular system Ly = A'b, followed by back-substitution in upper
triangular system L6 =y
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Sparse Matrices

» A matrix is called sparse if many of its entries are zero

5

» A block matrix is a matrix which is interpreted as partitioned into
sections called blocks that can be manipulated at once
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Sparse Algebra

http://faculty.cse.tamu.edu/davis/suitesparse.html

SLAM++

high-performance nonlinear least squares solver for graph problems
Brought to you by: iviorela, swajnautcz

http://sourceforge.net/projects/slam-plus-plus/
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Pose - SLAM
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Structure From Motion

&
P

e

2 B o BB wiye
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