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Abstract—Most current SLAM systems are still based on
primitive geometric features such as points, lines, or planes.
The created maps therefore carry geometric information, but
no immediate semantic information. With the recent significant
advances in object detection and scene classification we think the
time is right for the SLAM community to ask where the SLAM
research should be going1 during the next years. As a possible
answer to this question, we advocate developing SLAM systems
that are more object oriented and more semantically enriched
than the current state of the art. This paper provides an overview
of our ongoing work in this direction.

I. INTRODUCTION AND MOTIVATION

Summarized in a single sentence, the problem of Simul-

taneous Localization and Mapping – or SLAM for short –

describes the process of a robot building a map of its unknown

environment while exploring it. Although [24] considers the

first SLAM problem in the scientific literature to date back to

the days of Gauss who developed a least-squares method for

calculating the orbits of the planets around the sun in 1809

[5], the birth of the modern SLAM problem can be traced

back to the ICRA conference in 1986 where the first ideas

and thoughts on the subject were discussed. Shortly after that,

a number of seminal publications established this new field of

robotics research. The acronym SLAM was later coined in [4].

For further references and interesting details on the history of

the SLAM problem we refer the reader to [3].

SLAM has been a highly active field of robotics research

over the past decades with a myriad of published scientific

papers, and a vast number of proposed algorithms and ap-

proaches. While in the early days Extended Kalman Filters

and later particle filters (see [29] for an overview of such

methods) have dominated the field, the community’s interest

shifted towards smoothing methods based on efficient nonlin-

ear optimization (e.g. [2, 13, 15, 10]) during the past years.

The maps created by most SLAM systems are often based

on simple geometric features such as points, line segments

[16], or planes [11]. They carry geometric but no immediate

semantic information. An exception is the seminal work by

Salas-Moreno et al. [22]. This work proposed a truly object

oriented SLAM system by using real-world objects such

as chairs and tables as landmarks instead of meaningless

geometric primitives. [22] detected these objects in RGB-D

data by matching 3D models of known object classes.

1”Quo vadis?” Latin for ”Where are you going to?” after the 1896 novel
and 1951 motion picture of the same name.

In the two years after [22] introduced this system, vision-

based object detection and recognition has made an impressive

performance leap after the re-advent of Convolutional Neural

Networks (ConvNets). Starting with [14], several other groups

(e.g. [23, 6, 9, 28]) have increased the quality of ConvNet-

based methods that have even reached human performance on

the standardized ImageNet ILSVRC benchmark [21]. Another

area ConvNets currently strive and outperform traditional

approaches is the problem of scene categorization [32, 33]

that aims at assigning a semantic label such as living room or

kitchen to the whole scene. Even more than the dominance of

ConvNet-based approaches in the recent scientific literature,

the massive investments of companies like Google, Facebook,

Microsoft, and Baidu in advancing these techniques are key

indicators of the potential the computer vision and machine

learning communities see in these approaches.

Despite these impressive developments, the SLAM com-

munity does not seem to have adopted the newly arisen

opportunities for their own work. We think the time is right

to leverage the recent successes in object detection and scene

recognition and work towards more object oriented and se-

mantically enriched SLAM and mapping systems for robotics

and autonomous systems.

The paper proceeds as follows: Section II discusses selected

areas where we feel more semantic information can be largely

beneficial for SLAM. In Section III we introduce some aspects

of our currently ongoing work towards a more object oriented

SLAM system.

II. MORE SEMANTICS FOR SLAM:

THOUGHTS ON SOME BENEFICIAL EFFECTS

A. What is a Good Landmark for SLAM?

Not all objects in an environment are equally well suited to

be used as landmarks for localization and mapping. In fact,

what makes a good landmark depends largely on the semantic

context and the time frame re-localization should occur in.

Knowing the semantics of both the scene and the visible

objects allows to estimate or rank the quality of potential

landmarks according to learned or pre-defined criteria.

For example, highly dynamic objects such as humans are

definitely bad landmarks for localization and SLAM. Other

potentially dynamic objects, such as cars, might be useful

under certain conditions: Cars in a parking lot are not useful

for localization over longer periods of time (e.g. several hours),

since they will probably have moved by the time the robot



returns. However, over shorter time frames (e.g. 30 minutes)

they might provide stable and reliable localization cues. The

extent of this time frame also depends on the overall semantic

context of the scene and differs between a street scene with

cars parked at the side of the road and cars parked in a public

parking garage. Also the current daytime might provide further

cues, as parked cars during the day tend to be more dynamic

than during the night.

How to learn and model which objects provide reliable

landmarks, in which semantic contexts, at which time of day,

and how to incorporate such knowledge into a working SLAM

system are interesting questions for future research. Certainly

the recent advances in object and scene classification will play

a key role in answering these questions.

B. Providing Scale and Perspective for MonoSLAM / SfM

A common problem in monocular SLAM or Structure from

Motion approaches is the unknown scale factor. Typically

additional sensors such as IMUs are used to make this

missing information accessible. However, when combining

purely vision-based monocular SLAM / SfM with an object

detection pipeline, classifying the objects in the scene can

provide important cues about the distance of these objects

and therefore provide overall scale information that are im-

possible to obtain without additional sensors. This requires

knowledge about typical object sizes which can be obtained

from training data, modeled with the help of a human expert,

or even acquired over time by the combined SLAM / object

recognition system itself. Vice versa, knowing the size of an

object from SfM or SLAM can provide valuable information

for the object classification, and could significantly improve

the object detection rate in everyday scenes. We see many

possible benefits of combining monocular SLAM / SfM with

an object recognition pipeline and will work further towards

this goal.

C. High-Level Localization and Place Recognition

Scene categorization or scene classification [32] aims at

determining the general semantic class of a scene, such as

office or kitchen. Such semantic information about the cur-

rently observed overall scene can provide valuable cues for

high-level localization (e.g. localization on scale of individual

rooms or larger functional areas in an environment such as a

food court or a lobby).

In [26] we showed that using the semantic place category

as prior information can help to drastically reduce the search

space for place recognition while losing only a small amount

of recognition accuracy.

D. Easing Human-Robot Interaction

Semantic information about the environment is an important

enabler of more advanced robotic tasks, especially for human-

robot collaboration. Humans describe places, goals, and ob-

jects using semantic categories and it is natural for them to

formulate tasks using these categories [20]: “The kitchen is

down the hallway, go there and fetch the milk” [31] or “Pick up

this pallet”. Semantic knowledge can also modulate the robot’s

general behaviour, motion primitives, path planning costs, and

obstacle avoidance strategies so that it is more compatible

with human expectations and requirements. A robot might

try to avoid the busy food court during lunch hours, behave

differently in a corridor than in an office, or move more

carefully through the kitchen than in the living room.

III. CURRENT AND ONGOING WORK TOWARDS MORE

OBJECT ORIENTED AND SEMANTIC SLAM

In this section we provide a short overview on our current

work towards semantically enriched robotic mapping and

SLAM. The work described in III-A and III-D has been

published in [18] and [27] at the CVPR Workshop on Scene

Understanding. The content of III-B and III-C is currently

under review [25].

A. Analyzing and Improving Object Proposal Methods

The current state of the art in computer vision for object

detection tasks such as the ImageNet [21] challenge (ILSVRC)

is to use an object proposal step that extracts a number of

bounding boxes from an image that might contain an object

of interest. Each of those bounding boxes is then classified

separately by a Convolutional Network. Approaches following

this paradigm are for instance [6].

A number of object proposal methods have been proposed,

EdgeBoxes [34], BING [1], or Selective Search [30] being

among the most prominent. Comparing a variety of such

methods, [8] found that EdgeBoxes works best for typical

object detection benchmarks. The algorithm mainly relies on

the observation that the number of contours that are wholly

contained in a bounding box is indicative of the likelihood of

the box containing an object. It measures an objectness score

by comparing the number of edges within each bounding box

with the number of edges passing through it.

Although [8] recommends to use EdgeBoxes for object

detection, we found in our own evaluation [18] that the

bounding boxes proposed by EdgeBoxes often do not cover

meaningful objects well in more realistic real-life scenarios

with cluttered scenes. We tested this both on the NYU2 dataset

[19] and on a dataset we collected with a robot in our lab

and a kitchen environment. Further analysis showed that by

refining EdgeBoxes’ main parameters alpha and beta, a

significantly better proposal quality can be achieved. For that

analysis we defined an objective function that is based on

the Intersection-over-Union score (thus measuring how well

the proposed bounding boxes cover the ground truth objects)

and furthermore weights the proposals by their rank assigned

by the core EdgeBoxes algorithm. This follows the intuition

that we want the relevant proposals have a high rank, to

be able to concentrate further processing on the best few

proposals. Fig. 1 illustrates the two dimensional parameter

space from that study. We can see that the default parameters

(black point) score significantly worse than the best parameter

setting (white point) we found through random search. Fig.
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Fig. 1: Parameter space for our performance analysis of

EdgeBoxes [34]. Through random search over an IoU-based

objective function we found a parameter setting (white) that

performs much better on cluttered real-world scenes than the

default settings (black).

Fig. 2: Left: Object proposal boxes extracted using Edge

Boxes’ default parameters in a cluttered scene do not cover

the relevant objects well. Right: After refining the parame-

ters the quality of the proposals improves both visually and

quantitatively.

2 illustrates extracted bounding boxes with the default and

refined parameters.

Recently [7] proposed a new object proposal method based

on visual saliency that seems to perform much better than

EdgeBoxes in cluttered indoor scenes. Since extracting object

proposals is the first important step in current object detection

pipelines, working towards improvements and generally more

robust methods is a worthwhile direction for research.

B. Creating Semantic Maps

One aspect of our current research focuses on the question

how a standard SLAM system can be combined with a vision-

based scene classification system to create semantic maps of

the environment. We developed such a system and evaluated

it on a real robot. The work is currently under review [25],

we therefore only summarize the most important aspects in

the following.

The underlying SLAM system we use is the gmapping

module contained in ROS that maintains a occupancy grid map

and uses sensor data from a laser range finder and odometry

readings. To classify the currently observed scene, we apply

the Places205 convolutional network [33] that extracts a

probability distribution over 205 known class labels (e.g.

office, lobby, foodcourt) given a camera image. The probability

distribution coming from the convolutional network is then

processed by a Bayesian filter for temporal coherence and to

incorporate prior domain knowledge about the place categories

that can be expected to be observed. The resulting probability

distribution is then propagated along the current laser scan and

incorporated into the occupancy grid map. We extended this

map structure so that it maintains a distribution over scene

labels for each map cell. Updates of the scene labels are

performed using the usual Bayesian filter update rules for grid

maps.

We deployed this system in a variety of places on our

university’s campus using three very different camera systems

mounted on a GuiaBot. Fig. 3 illustrates the resulting variety

in visual appearance. By human inspection we evaluated the

accuracy of the scene classifier and found that 68% of all

camera frames are correctly classified. Fig. 4 illustrates the

resulting maps of 9 different places on our campus. Fig. 5

shows a close-up of the map produced in an office environment

that also contains a corridor and a kitchenette in the corner.

We could show that a generic ConvNet can be success-

fully deployed for semantic mapping on a robot without

environment-specific training or fine-tuning [25]. We further-

more demonstrated how the created maps could be used to

modulate the robot’s behavior during simple navigation tasks:

The robot was programmed to avoid office areas during work

hours to not disturb humans and rather plan longer paths

through the corridors. At night time however, the shortest path

would always be preferred.

C. Expandable Place and Object Classification

A major difference between the computer vision community

and robotics is the closed set assumption. Most object de-

tection or scene classification benchmarks in computer vision

assume that all classes are known during training, and that the

classifier is presented only images of one of the known classes

during testing [21, 33]. This is called closed set classification.

However, research in robotics aims at life-long operations and

long-term autonomy over extended periods of time. Inevitably,

the robot will be faced with scene categories or object classes

that were not part of the initial training set, but are important

for the robot’s mission. Being able to extend the classification

framework with new classes during deployment therefore is

crucial.

In [25] we show how the place categorization based on the

Places205 network described in the previous section can

be expanded by a set of new classes yi that are not part of the

original training set: We propose to train a one-vs-all classifier

that distinguishes the new class yi from the already known



Fig. 3: The Guiabot robot used to evaluate the semantic map-

ping system and example images from all three cameras in a

variety of places: Kinect RGB (color), Grayscale, and Ladybug

(portrait format). Notice that all images are resized to a fixed

size of 231 × 231 before calculating the ConvNet features.

While the change in aspect for the RGB and Grayscale images

is minor, the Ladybug image gets squeezed significantly. Also

notice the low quality of the Ladybug image.

Fig. 4: Maps created by the semantic mapping system in

nine different parts of our campus (not drawn to scale). The

percentages refer to the fraction of correctly classified images,

not to the correctly labeled map area.
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Fig. 5: A semantic map generated by a combination of laser-

based gmapping and a vision-based scene classifier using

the Places205 ConvNet. The colors encode the semantic

categories of different places encountered in the environment.

The figure shows a map of an office environment (orange) with

a kitchenette (dark green) and a long corridor (light green).

classes {x0...n, y0...i−1}. The advantage of this approach is

that it is not necessary to retrain the ConvNet, which would

be computationally expensive (typical training times are in

the order of days) and would require a lot of training images

(in the order of hundreds or thousands) of the new class. In

contrast, a Random Forest one-vs-all classifier can be trained

in under a minute using only a few (in the order of 10-100)

training images. We let the classifier use the output of the fc7

layer of the Places205 network as a feature vector. The fc7

layer is the last generic (i.e. class independent) fully connected

layer in the network. The higher layers fc8 and prob have

205 output neurons since they are specifically tailored for the

task of recognizing the 205 classes from the training dataset.

As mentioned before, p(xt|It) – the discrete probability

distribution over n = 205 class labels xi – is the classification

result of the Places205 network, given the current image

It. Now p(yi|It) denotes the result of one of the one-vs-all

classifiers that is trained to classify the new class yi. Let

x̂ = (x0, x1, . . . xn, y0, . . . , ym) (1)

denote the combined vector of class labels. Then we define

the combined likelihood L(It|x̂t) as

L(It|x̂t) = (p(x0|It), . . . , p(xn|It), p(y0|It), . . . , p(ym|It))
(2)

Re-normalization distributes the probability between the n

classes known to the ConvNet classifier and the m additional

classes known to the one-vs-all classifiers in a natural way.

Notice that this assumes independence between the class labels
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Fig. 6: We model the scene understanding problem with a

factor graph over continuous variables. In contrast to previous

work – where the variables are discrete – we can perform

exact MAP inference using efficient nonlinear least squares

optimization.

x0...n and y0...m as well as pairwise independence between any

yi and yj .

D. Joint SLAM and Scene Understanding With Continuous

Factor Graphs

In the computer vision community, so called holistic ap-

proaches to scene understanding exploit the rich semantic

and spatial relations between individual objects in a scene or

between objects and the entire scene to boost the performance

of individual object and scene classifiers. Discrete graphical

models such as conditional random fields (CRFs) are com-

monly applied to model and solve this problem, e.g. [17, 12].

In contrast to these discrete approaches, continuous graph-

ical models dominate in SLAM. Inference in such continuous

factor graphs can be conducted via efficient nonlinear least

squares optimization. Since we are particularly interested in

exploring how SLAM and object detection and scene classifi-

cation (scene understanding) can be combined in one process

through joint estimation, we transferred the discrete parts of

the joint estimation problem into the continuous domain [27].

Scene understanding aims at finding the optimal discrete

label assignment to observed objects xi and the scene type

s, given the observed image and prior semantic knowledge.

In order to model and solve this problem with continuous

factor graphs, we have to transform it from the discrete into

a continuous domain. Instead of creating the graphical model

over discrete variables xi and s, we utilize the probability

distributions p(xi) and p(s) as high-dimensional, continuous

variables in our formulation: X = {p(x0), . . . ,p(xn),p(s)}.

Likewise, we interpret the results of the individual classifiers

for the objects and the scene type as measurements or obser-

vations: Z = {zobject
0

, . . . z
object
n , zscene}.

Our formulation corresponds to a probabilistic estimation

over probability distributions. The results of the maximum-a-

posteriori (MAP) inference therefore are distributions over the

object and scene classes: X ∗ = {p∗(x0), . . . ,p
∗(xn),p

∗(s)}.

To retrieve the optimal class label x∗

i for the i-th object,

another operation x∗

i = argmaxp∗(xi) is performed, and

identically executed for s∗. This is in contrast to the MAP

inference step in a CRF where — due to the discrete for-

mulation of the problem — the MAP results are class labels

directly [17, 12].

A proof of concept implementation has been recently pre-

sented in [27]. The system combined the outputs of a object

classification ConvNet, a scene classification ConvNet, and

the learned object-scene co-visibility statistics to improve the

object recognition rate. At this stage, no SLAM components

were implemented. This is ongoing and future work. We are

confident that the full model would allow us to jointly estimate

the pose and type of objects in the scene, the camera pose,

as well as the scene type, while exploiting the semantic and

spatial relations between all these variables, building on prior

knowledge that is learned from training data or modeled with

the help of a human expert.

IV. CONCLUSIONS

Our paper gave an overview of our ongoing work towards

semantics and object detection for robotic SLAM. We shortly

discussed a few selected aspects where we feel a closer con-

nection between object detection, scene classification, scene

understanding and SLAM can be highly beneficial. We are

convinced that future work into this direction will spawn

many interesting research questions and help improve the

performance in all of these fields.
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