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Abstract—Under the assumption of identical covariance at each
pose, Horn’s method finds an aligning transform that is quite
similar to the one found using an optimization on the manifold.

I. INTRODUCTION

Given the output of a Simultaneous Localization And Map-
ping (SLAM) system, that is, environment representation and
robot poses, how can we measure its performance? Comparing
environment representations is difficult and in some cases not
possible due to lack of a usable ground truth. Alternatively,
ground truth trajectory can be easily acquired using either a
motion capture set up or high quality GPS. Therefore it is
common to assess the quality of a SLAM system by comparing
the estimated robot poses against those in the ground truth. In
general, two metrics have been employed for this purpose:
a) Absolute Trajectory Error (ATE), which measures the
difference between the translation part of two trajectories by
first aligning them into a common reference frame, and
b) Relative Pose Error (RPE), which measures the difference
between relative transformations at time instances i and i+k,
for different values of k. This method is independent of the
reference frame but when the scale of the map is not known
(for example monocular mapping), a scale alignment needs to
be done before comparing trajectories using RPE.

Formally, assuming a set of poses from an estimated tra-
jectory: P1,P2, ...,PN and the corresponding time-aligned
ground truth poses: Q1,Q2, ...,QN where each pose belongs
to the appropriate Lie Group G(n), we are interested in
finding a space and/or scale aligning transform T. The error
Ei between Pi and Qi is then given by: Ei = Q−1i TPi.
The overall error is then calculated as the Root Mean Squared
(RMS) error over the translation components of all the poses
(7).

Predominantly two approaches are used for trajectory align-
ment: a) Sturm et al. [8] uses a least squares approximation
and b) Horn’s method [4] provides a closed-form solution
using unit quaternion. These methods rely on the translation
part of the poses and do not take into account the rotational
part. The reasoning behind relies in the fact that SLAM is
a sequential algorithm, and consequently, errors in rotation
would show up as errors in translation later on, therefore, it is
sufficient to align trajectories based on their translational com-
ponent. This work observes the validity of this assumption by
formulating trajectory alignment as an optimization problem

on the manifold, which explicitly takes into account both the
rotational as well as the translational components.

II. TRAJECTORY ALIGNMENT ON THE MANIFOLD

We formulate the trajectory alignment problem as a least
squares optimization by minimizing:

argmin
T

N∑
i=1

dTi (T)Λidi(T), (1)

where di is the residual error and Λ is a covariance matrix.
The residual error in the tangent space g(n) is given by:

di := log
(
(Qi)

−1TPi

)∨
, (2)

where log : G → g is the logarithmic map which takes
an element G into its tangent space g. The vee-operator
log(· )∨ := (log(· ))∨ maps the element in the tangent space
to its minimal representation. We use Levenberg-Marquardt
algorithm to solve (1) by iteratively solving the normal equa-
tion: (

JTΛJ + µI
)
δ = −JTΛd(T), (3)

where J is the Jacobian of (2). Then, the update rule at each
step of the optimization is given by:

Tk+1 = exp(δ̂)Tk, (4)

where exp : g → G is the exponential map which takes an
element of the tangent space g(n) back into G(n). Detailed
derivation for SE(3) and Sim(3) are given in Appendix A.

III. BENCHMARKING METRICS

Once the needed transformation is found, the next step is
to define a metric that would tell us how well our SLAM
algorithm is performing. In order to do this, we present
a benchmark for measuring ATE which takes into account
rotation errors as well as translational errors. For translation,
we use the well-known mean, standard deviation and root
mean square error (RMSE):

transmean =
1

N

N∑
i=1

||trans(Ei)||2 (5)

transstd =

√√√√ 1

N

N∑
i=1

(trans(E)i − transmean)
2 (6)

transrmse =

√√√√ 1

N

N∑
i=1

||trans(Ei)||2 (7)



translation error(cm) rotation error (deg)
mean ± std rmse mean ± std

translation + noise Horn [4] 0.88 ± 0.37 0.95 0.00 ± 0.00
manifold 0.88 ± 0.37 0.95 0.00 ± 0.00

rotation + noise Horn [4] 0.00± 0.00 0.00 1.00 ± 0.42
manifold 0.00± 0.00 0.00 1.00 ± 0.42

trans + rot + noise Horn [4] 0.88 ± 0.37 0.95 1.00 ± 0.42
manifold 0.88 ± 0.37 0.95 1.00 ± 0.42

TABLE I: Simulation results SE(3). Average error on the
trajectory.

translation error(cm) rotation error (deg)
mean ± std rmse mean ± std

translation + noise Horn [4] 0.88 ± 0.37 0.95 0.00 ± 0.00
manifold 0.88 ± 0.37 0.95 0.00 ± 0.00

rotation + noise Horn [4] 0.00± 0.00 0.00 1.00 ± 0.42
manifold 0.00± 0.00 0.00 1.00 ± 0.42

trans + rot + scale + noise Horn [4] 0.50 ± 0.21 0.54 1.00 ± 0.42
manifold 0.50 ± 0.21 0.54 1.00 ± 0.42

TABLE II: Simulation results Sim(3). Average error on the
trajectory.

For rotation, we propose using the circular mean and the
circular standard deviation because arithmetic mean is not
appropriate for circular quantities [2]. First, we recover the
angle θi from the rotation of Ei by applying (11) to rot(Ei),
then we calculate:

rotmean =


tan−1

(
S

C

)
S > 0 and C > 0

tan−1
(

S

C

)
+ π C < 0

tan−1
(

S

C

)
+ 2π S < 0 and C > 0

(8)

rotstd =

√
−2ln

(√(
S
)2

+
(
C
)2)

(9)

with S =
∑N

i=1 sin(θi)

N , C =
∑N

i=1 cos(θi)

N .

IV. EXPERIMENTS

The basic aim of the experiments is to compare the per-
formance of Horn’s method to that of optimization on the
manifold in terms of the resulting error, measured according
to the presented metrics. Firstly, synthetic noise is added in
various configurations to a ground truth trajectory and in
the second part, trajectories obtained with different SLAM
systems are compared using both methods.

A. Simulation experiments

For the simulated experiments, we use the ground truth
trajectory from the RGB-D Benchmark [8] for the sequence
fr3/nostructure texture near withloop. We generate “noisy”
trajectories by applying a series of transformations with differ-
ent levels of Gaussian noise N (0, σ) with σ ∈ [0.001, 0.01].
The different scenarios are listed in Tables I and II. In each
case, we run 10 different experiments using 10 different levels
of noise. As it can be seen from Tables I and II, both methods
perform equally well.

B. Real data

We report the comparison of Horn’s method and our own
for different SLAM systems. We present results for PTAM

translation error (cm) rotation error (deg)
mean ± std rmse mean ± std

PTAM [5]
Initialization 1

Horn [4] 2.18± 1.73 2.87 0.99± 0.82
manifold 2.10 ± 1.91 2.93 0.97 ± 0.81

PTAM [5]
Initialization 2

Horn [4] 2.37 ± 2.40 3.47 1.08 ± 1.07
manifold 2.06 ± 2.67 3.57 1.02 ± 1.09

RGBD-SLAM [6]
SE(3)

Horn [4] 8.45± 2.16 8.72 3.90± 0.57
manifold 8.45± 2.16 8.72 3.90± 0.57

RGBD-SLAM [6]
Sim(3)

Horn [4] 2.45 ± 1.21 2.73 3.87 ± 0.59
manifold 2.44 ± 1.26 2.74 3.86 ± 0.59

TABLE III: ATE error comparison on the sequence
fr3/nostructure texture near withloop between Horn’s
method and manifold alignment.

[5] and RGB-D SLAM [6] on the aforementioned sequence
from the RGB-D Dataset. We run PTAM 10 times with
two different initializations and report average results in Ta-
ble III. PTAM is a monocular SLAM system and therefore the
aligning transform is in Sim(3). RGB-D SLAM uses RGB
and depth information to estimate the pose of the robot. The
transformation between the estimated trajectory and ground
truth in this case is in SE(3). Table III shows results for RGB-
D SLAM performance. We also consider the case when there
is a scale drift, and try to find an alignment in Sim(3). In all
these experiments, manifold optimization is able to find better
angular alignment but at the cost of increased translational
error.

V. CONCLUSION

Under the assumption that all the covariance matrices are the
same, Horn’s method which provides a closed form solution
to the trajectory alignment problem, performs as well as
finding an alignment on the manifold. For experiments with
real data, manifold optimization finds a transformation that
aligns the angular components better than Horn’s method, but
this comes at the cost of increased translation error, which is
understandable and expected. For SLAM systems that generate
an estimate of uncertainty at each pose, manifold optimization
allows a natural way of incorporating the uncertainty which
can be used to correctly weigh the importance of translation
and angular components during optimization.

ACKNOWLEDGMENTS

This research has been funded by the Dirección General
de Investigación of Spain under projects DPI2012-32168 and
DPI2012-32100. YL and IDR are extremely grateful to the
Australian Research Council for funding this research through
the ARC Centre for Robotic Vision C E140100016 [and
through a Laureate Fellowship FL130100102 to IDR]. Authors
would like to thank O. Grasa, P. Urcola and W. Hussain for
fruitful discussions.

REFERENCES

[1] J. E. Campbell. On a law of combination of operators bearing
on the theory of continuous transformation groups. Proceedings
of the London Mathematical Society, 28:381–390, 1897.

[2] N. I. Fisher. Statistical analysis of spherical data. Cambridge
University Press, 1993.



[3] J. Gallier. Geometric methods and applications: for computer
science and engineering, volume 38. Springer Science & Busi-
ness Media, 2011.

[4] B. K. Horn. Closed-form solution of absolute orientation using
unit quaternions. JOSA A, 4(4):629–642, 1987.

[5] G. Klein and D. Murray. Parallel Tracking and Mapping
for Small AR Workspaces. In IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR), pages
225–234, 2007.

[6] F. Steinbruecker, J. Sturm, and D. Cremers. Real-time visual
odometry from dense rgb-d images. In Workshop on Live
Dense Reconstruction with Moving Cameras at the Intl. Conf.
on Computer Vision (ICCV), 2011.

[7] H. Strasdat, J. Montiel, and A. J. Davison. Scale drift-aware
large scale monocular slam. In Robotics: Science and Systems
(RSS), 2010.

[8] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers.
A benchmark for the evaluation of RGB-D SLAM systems. In
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ Interna-
tional Conference on, pages 573–580. IEEE, 2012.

APPENDIX

A: OPTIMIZATION ON THE MANIFOLD

1) T ∈ SE(3) : We look at the Lie group SE(3) which
defines the group of rigid body transformations in the three
dimensional space. Its elements are of the form:

H =

[
R t

01×3 1

]
, (10)

where t ∈ R3 is a translation and R ∈ SO(3) is a rotation in
3D.

The residual error d = (υ,ω) in the tangent space se(3)
has a minimal representation which is a vector ∈ R6. Typically
the first three elements represent a translation υ ∈ R3 and the
latter three elements represent a rotation ω ∈ R3 in the axis-
angle form.

The operator log : SE(3)→ se(3) maps an element H onto
a vector in the tangent space (υ,ω).

θ = arcos

(
tr(R)− 1

2

)
(11)

ln(R) =
θ

2sin(θ)
(R−RT ) (12)

ω = [ln(R)]∇ (13)

υ = V−1t (14)

where [· ]∇ represents the off-diagonal elements and V is
defined as [3]:

V =

{
I if θ → 0

I + 1−cos(θ)
θ2 [ω]× + θ−sin(θ)

θ3 [ω]2× otherwise
(15)

with θ = ||ω||2 and

[ω]× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 ∈ SO(3), (16)

In order to map back to the original space, the operator
exp : se(3) → SE(3) is used which maps a vector in the

tangent space (υ,ω) onto an element H:

exp (υ,ω)se(3) :=

(
exp ([ω]×) Vυ

01×3 1

)
∈ SE(3), (17)

Finally, the Jacobian J required in (3) is given by:

J =
∂

∂δ
log
(
Q−1i exp(δ)TPi

)∨
se(3)

|δ=0≈ AdjQ−1
i

(18)

We approximate the Jacobian by the Adjoint map (Adj) using
the first order Campbell-Baker-Hausdorff expansion [1]. The
Adjoint map of H ∈ SE(3) is:

AdjH :=

[
R [t]×R

01×3 R

]
∈ R6×6 (19)

2) T ∈ Sim(3) : Similarly, the group Sim(3) defines the
group of similarity transformations in 3D, whose elements are
of the form:

S =

[
sR t

01×3 1

]
, (20)

where t ∈ R3 is a translation and R ∈ SO(3) a rotation, and
s ∈ R is a scale.

The residual error d = (υ,ω, σ) in the tangent space sim(3)
has a minimal representation ∈ R7. As previously defined, di
defines a translation υ ∈ R3 , a rotation ω ∈ R3 and a scale
σ ∈ R.

The operator log : Sim(3) → sim(3) maps an element S
into the tangent space (υ,ω, σ): ω is recovered by applying
11,12,13, and (υ, σ) using:

σ = ln(s) (21)

υ = W−1t (22)

where W is [7]:

W =



I if θ → 0, σ → 0
CI if θ → 0

I + 1−cos(θ)
θ2 [ω]× + θ−sin(θ)

θ3 [ω]2× if σ → 0

CI + Aσ+(1−B)θ
σ2+θ2

(
[ω]×
θ

)
+(

C − (B−1)σ+Aθ
σ2+θ2

)(
[ω]×
θ

)2 otherwise

(23)

with A = eσsin(θ), B = eσcos(θ), C =
eσ − 1

σ
, θ = ||ω||2.

The operator exp : sim(3)→ Sim(3) is given by:

exp (υ,ω, σ)sim(3) :=

(
eσexp ([ω]×) Wυ

01×3 1

)
(24)

Finally, the Jacobian J is given by:

J =
∂

∂δ
log
(
Q−1i exp(δ)TPi

)∨
sim(3)

|δ=0≈ AdjQ−1
i

(25)

We approximate again the Jacobian by the Adjoint using the
first order Campbell-Baker-Hausdorff expansion. The Adjoint
map of S ∈ Sim(3) is:

AdjS =

 sR [t]×R −t
03×3 R 03×1
01×3 01×3 1

 ∈ R7×7 (26)
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