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Abstract—This paper studies the relation between the graphi-
cal structure of simultaneous localization and mapping (SLAM)
and the D-criterion. In particular, we define a new connectivity
metric for graphs based on the number of spanning trees, and
prove that our metric is closely related to the log-determinant
of (i) the covariance matrix of the maximum likelihood estima-
tor, and (ii) the Cramér-Rao bound on the highest achievable
“accuracy” by unbiased estimators. We also propose an efficient
algorithm to compute our metric in large graphs. Our theoretical
results are validated using publicly available datasets.

I. INTRODUCTION

SLAM can be naturally represented by a graph whose vertex
set represents the set of robot poses (and landmarks) and
pairwise measurements are encoded in edges between the
corresponding vertices [14]. Other instances of such estimation
problems over graphs can be found in the context of sensor
networks [1]. Such graphs encapsulate some of the key at-
tributes of the underlying estimation problems. In this paper
we extend our previous work [7] and investigate the impact
of graph structure in SLAM datasets on the performance of
sensible estimators.

Consider a pose-graph SLAM problem with a given set of
robot poses. As we increase the number of pairwise relative
measurements between the poses, the uncertainty associated
to any sensible estimator will reduce. Increasing the number
of measurements is equivalent to adding new edges to the
corresponding graph. However, the graphical representation
of SLAM is often sparse due to various reasons such as
limited sensing range. It is well known that maintaining
and exploiting this sparsity is crucial to the scalability of
solvers [4]. Therefore there is a delicate trade-off between the
computational cost of solving SLAM and the reliability of the
solution. This trade-off gives rise to a number of overlooked
questions such as “how many and which edges are needed
to have a sufficiently reliable estimate?”. For this reason, it
is important to identify and characterize the exact impact of
graph structure on the performance of sensible estimators,
and pinpoint the key elements in the graph-theoretic and
estimation-theoretic facets of SLAM that influence each other.
Answering such questions enables us to maintain both sparsity
and reliability by distributing the sparse set of available edges
such that the graph remains “sufficiently” connected.

This is a relatively overlooked area. In our previous work [7]
we investigated the link between the reduced graph Laplacian
matrix and the Fisher information matrix. Here we extend
those results and present a proof for some of our empirical
observations in [7]. Our approach leads to a better under-
standing of some of the less-studied intrinsic characteristics

of SLAM as an estimation problem over graphs. We provide
the metrics required to quantify the quality of SLAM datasets
from a graphical perspective. Such tools can ultimately be used
to optimize relevant aspects of a SLAM problem in both active
and passive scenarios (see [7]).

A. Contribution

The main contributions of this paper are listed below.
1) Proposing τ̄(G), a metric for evaluating graph connec-

tivity in the context of SLAM and similar problems
involving estimation over networks.

2) Proposing an efficient algorithm for computing τ̄(G) in
large SLAM problems by exploiting the sparsity of the
edge set (Algorithm 1).

3) Proving our conjecture in [7] regarding the impact of the
number of spanning trees in planar SLAM (Propositions
1, 2 and 3).

4) Extending some of our previous results in [7] to the
case in which different measurements can have different
(but isotropic for relative position and orientation) noise
covariance matrices (Proposition 1).

5) Extending our numerical results from small graphs in [7]
to large-scale datasets.

B. Outline

In Section II we discuss some of the closely related works.
Section III formulates the problem and reviews preliminary
concepts from estimation theory and spectral graph theory.
In Section IV we compute the Fisher information matrix for
SLAM and two other related problems. In Section V we define
our connectivity metric and present our main theoretical results
regarding the impact of our metric on the D-optimality of
a SLAM problem. Numerical results on both synthetic and
real datasets are reported in Section VI. Finally, Section VII
concludes the paper. The proofs are given in the Appendix.

C. Notation

Throughout this paper bold lower-case and upper-case let-
ters are reserved for (real) vectors and matrices, respectively.
The eigenvalues of M are denoted by λ1(M) ≤ · · · ≤ λn(M).
Sets are shown by upper-case letters. |X | denotes the car-
dinality of set X . Natural logarithm is denoted by log(·).
1, I and 0 denote the vector of all ones, identity and
zero matrix with appropriate sizes, respectively. S1 � S2

means S1 − S2 is positive-definite. Kronecker product is
denoted by ⊗. Euclidean norm is denoted by ‖ · ‖. The
weighted Euclidean norm of vector e with matrix W � 0



is denoted by ‖e‖W ,
√

e>W e. Let vec(q1, . . . ,qn) de-
note the column vector obtained by stacking qi’s. Moreover
diag(W1, . . . ,Wk) is the block-diagonal matrix with matrices
W1, . . . ,Wk as blocks on its main diagonal. Finally Sn+ and
Sn++ denote the positive semidefinite cone and positive definite
cone in Rn×n, respectively.

II. RELATED WORKS

In [11], Olson and Kaess propose the average degree of
nodes as a metric to be used in evaluating connectivity in
pose-graphs. They empirically observed that the minimum of
cost function f? , f(x?) approaches the cost associated to
the ground truth, f ς , f(xς), as the average degree of the
graph increases. In their view, the ratio γ , f?/f ς reflects the
tendency to overfit. Consequently they concluded that having
a small average degree leads to overfitting.

Carlone et al. compute a conservative estimate of the
basin of attraction of the maximum likelihood estimate under
Gauss-Newton [2]. They show that their estimate is related to
the smallest eigenvalue of the reduced Laplacian matrix of the
corresponding graph. Later in [7] we noted that this quantity
is closely related to the algebraic connectivity of the graph
[5].

Our previous work [7] was the first step towards under-
standing the impact of the graphical structure of SLAM on
some of the desirable attributes of the underlying estimation
problem. In [7] we began where [11] left off; we showed how
the expected value of γ can be approximated by a function
of the average degree of graph. It is worth noting that this
quantity is closely related to the trace of the reduced graph
Laplacian. As shown in [7], our approximation is consistent
with the empirical results reported in [11]. We then showed
that in particular linear-Gaussian models with isotropic noise
(e.g., SLAM with known orientation), the Fisher information
matrix is proportional to the reduced Laplacian matrix of the
corresponding graph. This relation enabled us to establish
the missing link between the two facets of such problems.
For example we noted that the determinant of the reduced
Laplacian matrix gives the number of spanning trees, while
determinant of the Fisher information matrix is closely related
to the volume of confidence ellipsoids. Furthermore, for such
problems we showed that the largest eigenvalue of covari-
ance matrix (CRLB) is bounded from below by κλ−12 (G)
in which λ2(G) is the algebraic connectivity of the graph
and κ is a constant related to noise variances. For planar
SLAM we showed how the number of spanning trees of the
graph appears in computing the determinant of the Fisher
information matrix. Our empirical observations suggested that
for sufficiently accurate rotational measurements, determinant
of the Fisher information matrix is approximately proportional
to t(G)3, where t(G) denotes the number of spanning trees
in graph G. Our observations were based on small portions
of both synthetic and real datasets. Finally we used the
number spanning trees in the graph as a metric to address
the active measurement selection and edge pruning problems.
We concluded that, even under more general conditions (e.g.,
correlated noise covariance matrices), the number of spanning

trees is an effective measure of evaluating the structural quality
of SLAM datasets.

In this paper we extend some of our previous results in [7]
to the case of non-isotropic noise covariance matrices. We also
provide a theoretical proof that explains our empirical obser-
vations regarding the impact of the number of spanning trees.
Furthermore, we propose an efficient algorithm to compute
our proposed connectivity metric in large datasets. Finally we
show how our metric can be used to compare the quality of
the graphical structure of datasets with different number of
poses.

III. PRELIMINARIES AND PROBLEM FORMULATION

In this section we briefly review some basic concepts and
results from spectral graph theory and estimation theory that
eventually will be used in the following sections.

A. Graph-theoretic Preliminaries

Consider a simple directed graph G = (V,E) with vertex
set V = {v0,v1, . . . ,vn} and edge set E ⊆ V × V such that
|E| = m. Let G̃ = (V,Ẽ) be the corresponding undirected
graph obtained by ignoring the orientation of edges in G.
Here we assume G is weakly connected, or equivalently, G̃
is connected. The degree of vertex vi ∈ V in G̃ is denoted
by deg(vi). The reduced incidence matrix of G after anchor-
ing v0 is denoted by A ∈ {−1,0,1}n×m. A is obtained by
removing the corresponding row from the incidence matrix
of G. Suppose ek , (vik ,vjk) denotes the k’th edge. Then
for every ek ∈ E , Ajk,k = 1, and Aik,k = −1 if ik 6= 0
and jk 6= 0. The remaining entries of A are all zero. The
reduced Laplacian matrix of G is defined as L , AA>.1 Note
that L can also be obtained by removing the row and column
associated to the anchor from the graph Laplacian matrix L̆. It
is easy to show that L can be written as L = D−W in which
D , diag (deg(v1), . . . ,deg(vn)) and W is the adjacency
matrix of G̃ after removing the row and column corresponding
to the anchor and ignoring the orientation of graph. It is well
known that A is full column rank if and only if G is weakly
connected, and therefore L � 0 if and only if G̃ is connected.
The expanded reduced incidence and reduced Laplacian of G
are defined as A` , A ⊗ I` and L` , L ⊗ I` = A`A

>
` for

` ∈ Z≥2, respectively.
In connected graphs, the Laplacian matrix L̆ � 0 has

a zero eigenvalue with eigenvector 1. The second smallest
eigenvalue of L̆, λ2(G) , λ2(L̆) > 0, is known as the
algebraic connectivity of graph [5]. Note that if G1 is a con-
nected spanning subgraph of G2, we have λ2(G1) ≤ λ2(G2).
Algebraic connectivity frequently appears as a key factor in
many applications in multi-agent systems, often influencing
the convergence time in dynamical systems evolving according
to q̇ = −L̆ q. See [9] for a survey.

A spanning tree of G̃ is a spanning subgraph of G̃ that is
also a tree. Let t(G) denote the number of spanning trees of
G̃. Consider a tree T and the complete graph K, both over V

1Note that the (reduced) Laplacian defined here is independent of the
orientation of edges.



with |V| = n+ 1 vertices. Then we have2

t(T ) = 1 ≤ t(G) ≤ (n+ 1)n−1 = t(K) (1)

Trivially, if G1 is a connected spanning subgraph of G2, then
t(G1) ≤ t(G2). Thus t(G) can be used to evaluate the graph
connectivity. The following theorem provides an expression
for t(G) in the general case [5].

Theorem 1: (Kirchhoff’s Matrix-Tree Theorem) The num-
ber of spanning trees of graph G is given by t(G) = det L, in
which L is the reduced Laplacian matrix of G after anchoring
an arbitrary vertex.

B. Estimation-theoretic Preliminaries

In SLAM and many other estimation problems, our goal
is to estimate a set of deterministic unknown parame-
ters xς0,x

ς
1, . . . ,x

ς
n using a given sequence of measurements

{zij}(i,j)∈E such that zij only depends on xςi , xςj and a random
noise εij . G = (V,E) is called the graphical representation of
such problem if there is a one-to-one correspondence between
the vertex set V and {xς0,xς1, . . . ,xςn}. Due to the relative
nature of measurements in the problems we consider in this
work, a standard choice is to choose an arbitrary xςi as the
anchor (e.g., xς0 = 0). The measurements are generated ac-
cording to z = h(xς)+ε, in which xς , vec(xς1, . . . ,x

ς
n) ∈ X ,

z ∈ Z is the stacked vector of measurements, h : X → Z
is called the measurement function and ε ∼ N (0,Σ) is the
measurement noise. In this paper we are interested in x?, the
maximum likelihood estimate (MLE) for xς ,

x? = arg min
x

f(x) = arg min
x

‖z− h(x)‖2Σ−1 . (2)

Here we briefly review the Cramér-Rao lower bound
(CRLB). Due to the random nature of noise, observations
z and therefore any (reasonable) estimator of xς such as x̂
are random variables. x̂ is called an unbiased estimator if
E[x̂] = xς .3 Note that the estimation error covariance matrix,
Cov [xς − x̂], is identical to the covariance of x̂, Cov [x̂].

Theorem 2: (CRLB) Under some regularity conditions [13],
the covariance matrix of any unbiased estimator of x, such
as x̂, satisfies Cov [x̂] � I−1(xς),4 where I(x) is the Fisher
information matrix (FIM),

I(x) , E
[ ∂
∂x

log p(z; x)
∂>

∂x
log p(z; x)

]
. (3)

Here the expectation is over z and with respect to p(z; x). Note
that FIM depends only on the true value of x and p(z; x),
and therefore is independent of any particular realization of
z. An unbiased estimator that achieves CRLB is called an
efficient estimator. Under some regularity conditions, MLE
x? is asymptotically unbiased, efficient and follows a normal

2The expression for computing the number of spanning trees in complete
graphs, t(K`) = ``−2, is known as Cayley’s formula.

3Expectation is over z and with respect to p(z;x).
4If A − B is positive-semidefinite, then Ai,i ≥ Bi,i. In other words, the

diagonal elements of CRLB are lower bounds on the variance of any unbiased
estimator for each parameter.

distribution with mean xς and covariance I(xς)−1. It is
important to differentiate between the followings.

(i) I(x) evaluated at x = xς is FIM, and therefore I(x)−1

evaluated at x = xς gives CRLB, whose trace is a lower
bound on the achievable mean squared error (MSE) by
any unbiased estimator.

(ii) The inverse of I(x) evaluated at x = x? is commonly
used to approximate the covariance matrix of MLE.
Note that unlike FIM, this quantity depends on x? and,
consequently, the given realization of z.

For the measurement model introduced earlier we have

log p(z; x) = −1

2
‖z− h(x)‖2Σ−1 + const. (4)

Plugging (4) into (3), computing the gradient vector and the
expectation with respect to p(z; x) gives I(x) = J>Σ−1J, in
which J is the Jacobian matrix of the measurement function.
Thus for our model I(xς) and I(x?) are obtained by evalu-
ating the Jacobian matrix at xς and x?, respectively.

IV. FISHER INFORMATION MATRIX

In this section we derive closed-form expressions for I(x)
in SLAM and a number of interesting special cases that arise in
the context of sensor networks. As will become evident shortly,
in such problems, the Fisher information matrix is closely
related to the graphical representation G, mainly through the
reduced Laplacian matrix L.

A. SLAM

The state vector in planar pose-graph SLAM is composed of
robot poses captured at discrete time steps along the traversed
trajectory. After a permutation, this state vector can be written
as x = vec(p,θ) in which p ∈ R2n is the stacked vector of
robot positions in the plane and θ ∈ [−π,π)n is the stacked
vector of robot orientations.5 Each measurement is a noisy 2D
rigid body transformation between two robot poses,

zij =

[
R(θςi )

>(pςj − pςi )

wrap (θςj − θ
ς
i )

]
+ εij , (5)

in which pςi denotes the position of the ith robot pose,
R(θςi ) ∈ SO(2) is the rotation matrix corresponding to θςi , and
wrap : R→ [−π,π) is the function that maps its argument to
the equivalent angle in [−π,π). Therefore the measurement
vector can be written as z = vec(zp,zθ) in which zp is
composed of translational components and zθ is the stacked
vector of the rotational components of measurements. As in
[2], in order to replace wrap (θςj−θ

ς
i ) with θςj−θ

ς
i we need to

assume that correct regularization terms have been computed
for the rotational component of measurements [3]. Then the
measurement function can be expressed as below.

h(x) =

[
R>A>2 0

0 A>

] [
p
θ

]
. (6)

Here R , diag (R(θk1),R(θk2), . . . ,R(θkm)) in which ki
denotes the index of the tail of the ith directed edge in E .

5In feature-based problems, p also contains the position of landmarks.



Assumption 1: [Noise Covariance Matrix of Planar SLAM]
In this paper we assume the noise covariance matrix Σ of
planar SLAM has the following structure,

Σ = diag(σ2
pI,σ

2
θI).

.
The Jacobian of the measurement function and the Fisher

information matrix are derived in [7].

I(x) =

[
σ−2p L2 σ−2p A2Γ∆

∗> σ−2θ L + σ−2p ∆>∆

]
, (7)

in which Γ is the following block-diagonal matrix

Γ , Im ⊗
[

0 1
−1 0

]
, (8)

and for each ek = (ik,jk) ∈ E , there is a 2-by-1 block in
∆ ∈ R2m×n that contains(

∆
)
2k−1:2k,ik

= pjk − pik . (9)

The remaining elements in ∆ are all zero.
Remark 1: The following statements hold regarding I(x).
• Γ is an orthogonal matrix, i.e., Γ>Γ = I.
• As noted by [2], ∆>∆ is a diagonal matrix with an

interesting structure. (∆>∆)i,i is equal to the sum of
squared distances between the ith robot pose, and all of
the nodes observed by it,

(∆>∆)i,i =
∑

j∈{j|(i,j)∈E}

‖pi − pj‖2. (10)

B. Linear-SN and Compass-SLAM
As we did in [7], we define the following linear-Gaussian

classes of problems that arise in sensor networks (linear-SN),
as well as 2D and 3D SLAM when the robot orientation is
known (compass-SLAM).

Definition 1: (Linear-SN) The term “linear-SN” refers to
the class of estimation problems, often arise in the context of
sensor networks, in which each measurement has the following
form,

zij = xςj − xςi + εij . (11)

Therefore the measurement function can be written as
h(x) = A>d x in which d is the dimension of xi. The time-
synchronization problem in sensor networks belongs to this
class [1].
The Fisher information matrix in linear-SN is given by

I = A>d Σ−1Ad. (12)

In the special case of Σ = σ2I, we have I = σ−2Ld. A
more general case arise when measurements have different
accuracies, i.e., Σ = diag(σ2

1Id, . . . ,σ
2
mId). In this case,

I = A>d Σ−1Ad is equal to the reduced weighted Laplacian
matrix of G when each edge ei ∈ E is weighted according to
w(ei) = σ−2i .

Definition 2: (Compass-SLAM) The term “compass-
SLAM” refers to the class of SLAM problems (2D and 3D

pose-graph and feature-based) in which the robot orientation
is known. The measurement function associated to such
problems with pi ∈ Rd (d ∈ {2,3}) can be written as
h(x) = R>A>d p, in which R is a given orthogonal matrix.
It is straightforward to show that the Fisher information matrix
for compass-SLAM with Σ = σ2I is given by I = σ−2Ld.

V. MAIN RESULTS

The log-determinant of positive-definite covariance matri-
ces log det : Sn+ → R, can be viewed as a measure of
“uncertainty”. For instance, in multivariate Gaussian distribu-
tions, the determinant of the covariance matrix is proportional
to the square of the hypervolume of confidence ellipsoids.
Moreover, from an information-theoretic standpoint, the log-
determinant of the covariance matrix of a Gaussian distribution
is proportional to its differential entropy up to an additive
constant. In the context of optimal experimental design, a
design is called D-optimal (determinant-optimal) if it attains
the minimum log det of estimation error covariance matrix
[12]. The D-criterion, due to the reasons mentioned above, is
a popular choice and has been frequently used in many design
problems in robotics including sensor placement [6] and active
SLAM [15]. Finally, it is easy to show that the log det of
CRLB is a lower bound for the log det of covariance matrix
of any unbiased estimator (see Theorem 2 and Lemma 1).

A. Criterion: Tree-Connectivity
As we saw earlier, t(G) is a sound measure of graph

connectivity. Here we define a metric based on t(G) to measure
graph connectivity.

Definition 3: We define the tree-connectivity of graph G,
τ(G), as follows.

τ(G) , log t(G) = log det L . (13)

Here L is the reduced Laplacian matrix of G. Note that
τ(G) is a well-defined metric for graph connectivity since
t(G1) ≤ t(G2)⇔ τ(G1) ≤ τ(G2).

It is practically infeasible to work directly with the determinant
in large SLAM problems and graphs as it often becomes too
large (or too small, in the case of L−1 and covariance matrices)
for finite-precision arithmetic [7]. A key advantage of τ(G)
over t(G) is that it can be efficiently computed for large sparse
graphs. Algorithm 1 exploits the sparse structure of E in order
to compute τ(G) efficiently using the Cholesky decomposition
of L. Here we use the fact that det(K) =

∏
i Ki,i for

triangular K. For dense graphs, this approach requiresO(|V |3)
time, while in practical problems that arise in the context of
robotics and sensor networks, Algorithm 1 performs much
faster given a sufficiently good fill-reducing permutation Π.

B. Linear-SN and Compass-SLAM
Now we are ready to investigate the link between τ(G)

and log det I(x). The following proposition straightforwardly
follows from Section IV-B.

Proposition 1: In linear-SN and compass-SLAM, the max-
imum likelihood estimator is unbiased and efficient. Further-
more, if the noise is isotropic, we have

log det(Cov[x?]) = − log det I = −dτ(G) + η (14)



Algorithm 1 τ(G) , log det(L) for sparse symmetric L � 0

1: function tree−connectivity(G)
2: Choose a fill-reducing permutation Π.
3: Compute K, the sparse Cholesky factor of ΠLΠ>.
4: return τ(G) = 2

∑
i log Ki,i.

5: end function

in which η = (|V| − 1)d log(σ2). In linear-SN problems with
Σ = diag(σ2

1Id, . . . ,σ
2
mId) we have

log det(Cov[x?]) = −τw(Gw) , − log det Lw (15)

in which Lw denotes the reduced weighted Laplacian matrix
of weighted graph Gw = (V,E ,w) with weight function
w : E → R>0 defined as w(ei) = σ−2i and τw(Gw) is the
tree-connectivity of Gw.

Proposition 1 ensures that in linear-SN and compass-SLAM
and under the specified assumptions, minimizing the differ-
ential entropy of x?, minimizing the volume of uncertainty
ellipsoids or finding the D-optimal design are all equivalent
to maximizing the tree-connectivity of the network. This
proposition provides a solid foundation for a framework in
which our proposed metric τ(G) is used to quantify the quality
of network topology in such problems.6

C. Planar SLAM

In [7] we made a number of empirical observations regard-
ing the relation between det I(x) in planar SLAM and the
number of spanning trees in the graph. The following propo-
sitions provide a formal explanation for those observations.
The proofs are provided in Appendix A.

Proposition 2: (Lower and Upper Bound) Suppose I◦(x) is
the Fisher information matrix of the odometry subgraph, com-
posed of robot poses and odometry measurements E◦ ⊆ E . Let
us define α , σθ/σp, Φinf(G) , log det I(x)− log det I◦(x)
and

dist2out,max , max
i

(∆>∆)i,i, (16)

where ∆ was introduced in Remark 1 (see also Lemma 2 in
[2]). Then under the assumptions stated earlier, we have

3τ(G) ≤ Φinf(G) ≤ 2τ(G) +

n∑
i=1

log(λi(L) + α2dist2out,max).

(17)

Informally speaking, Φinf(G) can be seen as the “information”
gained by having loop-closure edges as compared with the
dead reckoning scenario. Proposition 2 ensures that this gain
is bounded by functions of our proposed metric τ(G) and the
distances between the poses along the edges.

Proposition 3: Let us define ψ , α2dist2out,max. The fol-
lowing statement holds.

lim
ψ→0+

Φinf(G) = 3τ(G), (18)

6For other possible metrics see [7].

or, equivalently, as it was empirically observed in [7],

lim
ψ→0+

log det I(x) = 3τ(G) + log det I◦(x). (19)

Proposition 3 provides an explanation for our empirical ob-
servations in [7]. It is of utmost importance to note that while
Proposition 2 provides lower and upper bounds for Φinf(G),
its main purpose is to be used in proving Proposition 3 (see
Appendix A). In fact Φinf(G) can be expressed exactly in terms
of L (topology), α (sensor quality) and ∆ (geometry) (see the
proof of Proposition 2 in Appendix A).

D. Normalized tree-connectivity

Comparing the graphical structure of two SLAM problems
based on our proposed tree-connectivity metric is meaning-
ful only if the two graphs have the same number of ver-
tices. A remedy to this limitation is to use the normalized
tree-connectivity defined below.

Definition 4: (Normalized tree-connectivity) We define the
normalized tree-connectivity of graph G, denoted by τ̄(G), as

τ̄(G) ,
τ(G)

τ(K)

(1)
=

τ(G)

(n− 1) log(n+ 1)
. (20)

Note that τ(K) is the maximum achievable tree-connectivity
among graphs with the same number of vertices as G.

Therefore for any (simple connected) graph G, τ̄(G) ∈ [0,1]
assigns a score that describes the tree-connectivity of G relative
to the tree-connectivity of the complete graph with the same
number of vertices. Proposition 3 ensures that under the stated
conditions we have,

lim
ψ→0+

Φinf(G)

Φinf(K)
= τ̄(G). (21)

Hence the normalized tree-connectivity can be seen as the ratio
of the information gained relative to dead reckoning, between
the realized graph G and the complete graph K (i.e., the
graph that contains all possible loop closures). In the following
section we use τ̄(G) to compare the quality of the graphical
structure of some of the publicly available SLAM datasets.

VI. NUMERICAL RESULTS

In this section we present numerical results using publicly
available datasets with two objectives. First, we validate our
theoretical results presented in Section V and in particular
Proposition 3. Our second objective is to see how small ψ
should be in practice for log det I(x) to be sufficiently close
to its limit when ψ → 0+. To do so, we need to define a
measure of closeness to the limit value of log det I(x). Here
we use the relative error (RE) as defined below,

RE ,
∣∣∣ log det I(x)− L

log det I(x)

∣∣∣ , (22)

in which,

L , lim
ψ→0+

log det I(x) = 3τ(G) + log det I◦(x). (23)



TABLE I: A summary of results for publicly available 2D pose-graph datasets, sorted according to τ̄(G).

Dataset τ̄(G) degavg α2 dist2out,max ψ RE (%)

M10K 0.2241 12.8622 0.0400 38.9251 1.5570 0.07
Intel 0.1329 3.8918 0.1000 13.9018 1.3902 0.06

City10K 0.1230 4.1374 0.2500 48.9235 12.2309 0.51
Lincoln 0.1155 3.9040 1.0000 50.6824 50.6824 58.00

Manhattan 0.0950 3.1160 1.0000 29.0000 29.0000 1.00
RingCity 0.0585 2.7624 3.0462 2.5370 7.7281 1.08
Freiburg 0.0421 2.4611 0.1000 4.1568 0.4157 0.04
CSAIL 0.0263 2.2411 0.2000 35.7974 7.1595 0.12

The datasets used in this section are all publicly available 2D
pose-graph SLAM datasets.7 For datasets with non-isotropic
covariance matrices, the original covariance matrices are mod-
ified to satisfy Assumption 1. Manhattan is the only dataset for
which we had a ground truth. Therefore for other datasets, RE
is evaluated at the solution obtained by Gauss-Newton initiated
from the spanning tree initial guess [8], i.e., (supposedly) x?.

A summary of results is shown in Table I. The entries in Ta-
ble I are sorted according to their normalized tree-connectivity
metric τ̄(G). Our results indicate that in practice RE is
relatively small even when ψ is far from being negligible.
This implies that in such cases, the log-determinant of Fisher
information matrix (or covariance matrix) is entirely charac-
terized by the tree-connectivity of graph. The large RE in the
case of Lincoln dataset (highlighted in red) is due to the fact
that Gauss-Newton has failed to converge to the true x?. The
average degree of graph [7, 11] is not sufficiently sophisticated
to differentiate between different graph structures with the
same number of edges and vertices. This case is depicted
in Table I where the highlighted entries in blue show an
inconsistency between the rankings based on the normalized
tree-connectivity and average degree.

Figure 1 shows how RE evolves with respect to scaling
ψ. Scaling ψ can be done by scaling either α2 or pς which
lead to identical results in terms of log det I(xς).8 Figure 1 is
obtained by scaling ψ according to βψorig in which ψorig = 29
is the original value of ψ in the Manhattan dataset (see Table I).
This figure clearly shows that as ψ → 0+, the log-determinant
of CRLB converges to −L as predicted by Proposition 3.

Figure 2 shows log det I(x?) as a function of τ(G) for
more than 44,000 random spanning subgraphs of the Intel
dataset. Every subgraph has the same vertex set as the original
dataset and contains all the odometry edges. Additionally, each
subgraph contains a random subset of loop-closure edges of
the original dataset. For each possible number of loop-closures
(i.e., 1, . . . ,|E| − |V|), we generated 50 random spanning
subgraphs. The predicted value is L. Figure 2 indicates that
in this case, tree-connectivity almost entirely characterises the
performance of the maximum likelihood estimator and CRLB
in terms of log-determinant of the covariance matrices as
predicted by our theoretical results. Note that the difference
between Figure 2 and Figure 4 in [7] are the sizes of the

7Note that Proposition 2 can be straightforwardly extended to the case of
2D feature-based SLAM. However in this paper we only provide numerical
results for pose-graph problems.

8See (38) in the Appendix.
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Fig. 1: RE evaluated at xς as a function of scale parameter
β for Manhattan. Here ψ = βψorig in which ψorig = 29 is the
value of ψ in Manhattan dataset (see Table I). This can be
done by scaling either α2 or pς . Note the logarithmic scale of
the horizontal axis.

TABLE II: Connectivity of publicly available 3D pose-graph
datasets. Entries are sorted according to τ̄(G).

Dataset τ̄(G) degavg

Sphere 2500 0.2444 7.8392
Pittsburgh A 0.0014 2.0038
The Hague 0.0012 2.0000

New College 0.0010 2.0037

subgraphs and range of horizontal axis, which indicate the
key role of Algorithm 1 in computing τ(G) efficiently for
large graphs.

Our extensive empirical observations suggest that Φinf(G)
asymptotically behaves as a linear function of τ(G) in 3D
pose-graph SLAM datasets with SE(3) measurements under
isotropic noise. Table II shows the tree-connectivity and τ̄(G)
for a number of publicly available 3D pose-graph datasets. We
plan to address this extension in our future work.

VII. CONCLUSION

In this paper we proposed tree-connectivity, a metric to
quantify connectivity of estimation graphs. We also proposed
an algorithm to efficiently compute our metric for sparse
graphs. Furthermore, we proved the relation between our
metric and the log-determinant of (i) covariance matrix of
the maximum likelihood estimator and (ii) Cramér-Rao bound
for the highest achievable “accuracy” by unbiased estimators.
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Fig. 2: log det I(x?) as a function of τ(G) for over 44,000
randomly generated spanning subgraphs of Intel dataset. Here
log det I(x) is evaluated at the maximum likelihood estimate
of the original dataset.

Numerical results using publicly available datasets confirmed
the validity of our analysis. It was observed that in many
practical scenarios, ψ does not need to be very small for
log det I(x) to converge to its limit L.

According to [2], graph connectivity, α and distout,max affect
the convergence of Gauss-Newton to the optimal solution x?.
Therefore there is an intriguing overlap between the elements
that appear in our analysis and those reported in [2]. This
connection requires further investigation.

As mentioned earlier, our results can be straightforwardly
generalized to 2D feature-based problems. Our extensive em-
pirical observations suggest that Proposition 3 can be also
extended to 3D SLAM with SE(3) measurements. We will
consider this extension in our future work.

Finally, we hope that our analysis will ultimately be used
to collect reliable datasets in active scenarios (see [7] for
two simplified applications in active measurement selection
and edge pruning). The graphical structure of any SLAM
problem can provide a compact but rich representation of
the underlying estimation problem. Making decisions and
planning (e.g., in active SLAM) based on the graph is robust
to common convergence issues (e.g., local minima). Our
metric can also be used as a benchmark for SLAM datasets.
As recommended by Olson and Kaess, we also encourage
researchers to compute and report connectivity metrics such as
our normalized tree-connectivity in their experimental results

as it “conveys significant information about the problem” [11].

APPENDIX A
PROOFS

Before proving the main propositions, we need the follow-
ing lemmas.

Lemma 1: For any two (symmetric) N,M ∈ Sn+ we have9

det(M + N) ≥ det(M). (24)

Proof: It is trivial to verify the lemma when M is singular.
For M � 0, we can decompose M as M = M

1
2 M

1
2 in which

M
1
2 ∈ Sn++. Then we have

det(M + N) = det(M) det(I + M− 1
2 NM− 1

2 )) (25)

= det(M)

n∏
i=1

(1 + λi
(
M− 1

2 NM− 1
2 )︸ ︷︷ ︸

≥ 0

)
(26)

≥ det(M). (27)

Lemma 2: The following statements hold about

P , Γ>A>2 L−12 A2Γ. (28)

1) P is the orthogonal projection onto range(Γ>A>2 ).
2) If G is a tree then P = I.

Proof: From Remark 1 recall that Γ is orthogonal. Let us
define Q , Γ>A>2 . Then it is easy to verify that P = QQ†

in which
Q† , (Q>Q)−1Q>

is the Moore-Penrose pseudoinverse of Q. This proves the first
statement. The second statement follows from the fact that for
trees, A2 and consequently Q are full rank square matrices
and therefore range(Q) = Rn, i.e., the orthogonal projection
onto range(Q) is the identity map.

Lemma 3: Under the stated assumptions we have

Φinf(G) , log det I(x)− log det I◦(x) (29)

= 2τ(G) + log det(L + α2∆>P⊥∆) (30)

in which P⊥ , I − P is the orthogonal complement of P
projecting onto null(A2Γ).

Proof: We begin by applying Schur’s determinant formula
[10] on (7).

log det I(x) = log det(σ−2p L2) + log det(S) (31)

in which S is the Schur complement of the top-left block in
(7),

S , σ−2θ L + σ−2p ∆>∆− σ−2p ∆>Γ>A2
>L−12 A2Γ∆ (32)

= σ−2θ L + σ−2p ∆>P⊥∆. (33)

9As it will become clear shortly, although stronger results do exist, this
lemma is sufficient for our proof.



Now note that det(L2) = t(G)2. Therefore (31) can be written
as

log det I(x) = 2τ(G) + log det(σ2
θS) + log(σ−4np σ−2nθ ).

(34)

Following the same steps for log det I◦(x) of the odometry
subgraph G◦ = (V,E◦), using Lemma 2 and noting the fact
that τ(G◦) = 0 results in

log det I◦(x) = log det(σ2
θS◦) + log(σ−4np σ−2nθ ) (35)

= log det(L◦)︸ ︷︷ ︸
τ(G◦)= 0

+ log(σ−4np σ−2nθ ) (36)

= log(σ−4np σ−2nθ ). (37)

Plugging (34) and (37) into the definition of Φinf(G) concludes
the proof.

Proof of Proposition 2: Note that both P and P⊥ are
positive semidefinite.10 For the lower bound note that from
Lemma 3 we have

Φinf(G) = 2τ(G) + log det(L + α2∆>P⊥∆︸ ︷︷ ︸
� 0

). (38)

Recall that L � 0 and therefore applying Lemma 1 results in

Φinf(G) ≥ 2τ(G) + log det(L) = 3τ(G). (39)

Similarly, the upper bound results from Remark 1 and applying
Lemma 1 twice as shown below.

Φinf(G) = 2τ(G) + log det(L + α2∆>P⊥∆) (40)

≤ 2τ(G) + log det(L + α2∆>P⊥∆︸ ︷︷ ︸
� 0

+α2∆>P∆︸ ︷︷ ︸
� 0

)

(41)

= 2τ(G) + log det(L + α2∆>∆) (42)
≤ 2τ(G)+ (43)

log det(L + α2∆>∆︸ ︷︷ ︸
� 0

+α2dist2out,maxI− α2∆>∆︸ ︷︷ ︸
� 0

)

(44)

= 2τ(G) + log det(L + α2dist2out,maxI) (45)

= 2τ(G) + log(

n∏
i=1

(λi(L) + α2dist2out,max)) (46)

= 2τ(G) +

n∑
i=1

log(λi(L) + α2dist2out,max). (47)

Proof of Proposition 3: Proposition 3 follows directly
from Proposition 2 and the squeeze theorem in calculus. To
see this note that as ψ → 0+, the upper bound in Proposition
2 approaches the lower bound since∑

i

log(λi(L)) = log(
∏
i

λi(L)) = τ(G). (48)

10The spectrum of P and P⊥ consists of only zeros and ones.
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and Basilio Bona. A fast and accurate approximation
for planar pose graph optimization. The International
Journal of Robotics Research, 33:965 – 987, 06/2014
2014. ISSN 1741-3176.

[4] Frank Dellaert and Michael Kaess. Square Root SAM:
Simultaneous localization and mapping via square root
information smoothing. Intl. J. of Robotics Research,
IJRR, 25(12):1181–1204, December 2006.

[5] Chris Godsil and Gordon Royle. Algebraic graph theory.
Graduate Texts in Mathematics Series. Springer London,
Limited, 2001. ISBN 9780387952413.

[6] Siddharth Joshi and Stephen Boyd. Sensor selection via
convex optimization. Signal Processing, IEEE Transac-
tions on, 57(2):451–462, 2009.

[7] Kasra Khosoussi, Shoudong Huang, and Gamini Dis-
sanayake. Novel insights into the impact of graph
structure on SLAM. In Proceedings of IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), 2014, pages 2707–2714, 2014.

[8] Kurt Konolige, Giorgio Grisetti, Rainer Kummerle, Wol-
fram Burgard, Benson Limketkai, and R. Vincent. Ef-
ficient sparse pose adjustment for 2D mapping. In
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on, pages 22–29. IEEE, 2010.

[9] Mehran Mesbahi and Magnus Egerstedt. Graph theoretic
methods in multiagent networks. Princeton University
Press, 2010.

[10] Carl D Meyer. Matrix analysis and applied linear
algebra. SIAM, 2000.

[11] Edwin Olson and Michael Kaess. Evaluating the perfor-
mance of map optimization algorithms. In RSS Work-
shop on Good Experimental Methodology in Robotics,
page 40, 2009.

[12] Friedrich Pukelsheim. Optimal design of experiments,
volume 50. SIAM, 1993.

[13] Harold Wayne Sorenson. Parameter estimation: prin-
ciples and problems. Control and systems theory. M.
Dekker, 1980. ISBN 9780824769871.

[14] Sebastian Thrun and Michael Montemerlo. The graph
SLAM algorithm with applications to large-scale map-
ping of urban structures. The International Journal of
Robotics Research, 25(5-6):403, 2006.

[15] Teresa A Vidal-Calleja, Alberto Sanfeliu, and Juan
Andrade-Cetto. Action selection for single-camera
SLAM. Systems, Man, and Cybernetics, Part B: Cyber-
netics, IEEE Transactions on, 40(6):1567–1581, 2010.


